OpenVPN
ssl.c
Go to the documentation of this file.
1 /*
2  * OpenVPN -- An application to securely tunnel IP networks
3  * over a single TCP/UDP port, with support for SSL/TLS-based
4  * session authentication and key exchange,
5  * packet encryption, packet authentication, and
6  * packet compression.
7  *
8  * Copyright (C) 2002-2018 OpenVPN Inc <sales@openvpn.net>
9  * Copyright (C) 2010-2018 Fox Crypto B.V. <openvpn@fox-it.com>
10  * Copyright (C) 2008-2013 David Sommerseth <dazo@users.sourceforge.net>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2
14  * as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, write to the Free Software Foundation, Inc.,
23  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24  */
25 
30 /*
31  * The routines in this file deal with dynamically negotiating
32  * the data channel HMAC and cipher keys through a TLS session.
33  *
34  * Both the TLS session and the data channel are multiplexed
35  * over the same TCP/UDP port.
36  */
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #elif defined(_MSC_VER)
40 #include "config-msvc.h"
41 #endif
42 
43 #include "syshead.h"
44 #include "win32.h"
45 
46 #include "error.h"
47 #include "common.h"
48 #include "socket.h"
49 #include "misc.h"
50 #include "fdmisc.h"
51 #include "interval.h"
52 #include "perf.h"
53 #include "status.h"
54 #include "gremlin.h"
55 #include "pkcs11.h"
56 #include "route.h"
57 #include "tls_crypt.h"
58 
59 #include "ssl.h"
60 #include "ssl_verify.h"
61 #include "ssl_backend.h"
62 #include "ssl_ncp.h"
63 #include "auth_token.h"
64 
65 #include "memdbg.h"
66 
67 #ifdef MEASURE_TLS_HANDSHAKE_STATS
68 
69 static int tls_handshake_success; /* GLOBAL */
70 static int tls_handshake_error; /* GLOBAL */
71 static int tls_packets_generated; /* GLOBAL */
72 static int tls_packets_sent; /* GLOBAL */
73 
74 #define INCR_SENT ++tls_packets_sent
75 #define INCR_GENERATED ++tls_packets_generated
76 #define INCR_SUCCESS ++tls_handshake_success
77 #define INCR_ERROR ++tls_handshake_error
78 
79 void
80 show_tls_performance_stats(void)
81 {
82  msg(D_TLS_DEBUG_LOW, "TLS Handshakes, success=%f%% (good=%d, bad=%d), retransmits=%f%%",
83  (double) tls_handshake_success / (tls_handshake_success + tls_handshake_error) * 100.0,
84  tls_handshake_success, tls_handshake_error,
85  (double) (tls_packets_sent - tls_packets_generated) / tls_packets_generated * 100.0);
86 }
87 #else /* ifdef MEASURE_TLS_HANDSHAKE_STATS */
88 
89 #define INCR_SENT
90 #define INCR_GENERATED
91 #define INCR_SUCCESS
92 #define INCR_ERROR
93 
94 #endif /* ifdef MEASURE_TLS_HANDSHAKE_STATS */
95 
100  {"ADH-SEED-SHA", "TLS-DH-anon-WITH-SEED-CBC-SHA"},
101  {"AES128-GCM-SHA256", "TLS-RSA-WITH-AES-128-GCM-SHA256"},
102  {"AES128-SHA256", "TLS-RSA-WITH-AES-128-CBC-SHA256"},
103  {"AES128-SHA", "TLS-RSA-WITH-AES-128-CBC-SHA"},
104  {"AES256-GCM-SHA384", "TLS-RSA-WITH-AES-256-GCM-SHA384"},
105  {"AES256-SHA256", "TLS-RSA-WITH-AES-256-CBC-SHA256"},
106  {"AES256-SHA", "TLS-RSA-WITH-AES-256-CBC-SHA"},
107  {"CAMELLIA128-SHA256", "TLS-RSA-WITH-CAMELLIA-128-CBC-SHA256"},
108  {"CAMELLIA128-SHA", "TLS-RSA-WITH-CAMELLIA-128-CBC-SHA"},
109  {"CAMELLIA256-SHA256", "TLS-RSA-WITH-CAMELLIA-256-CBC-SHA256"},
110  {"CAMELLIA256-SHA", "TLS-RSA-WITH-CAMELLIA-256-CBC-SHA"},
111  {"DES-CBC3-SHA", "TLS-RSA-WITH-3DES-EDE-CBC-SHA"},
112  {"DES-CBC-SHA", "TLS-RSA-WITH-DES-CBC-SHA"},
113  {"DH-DSS-SEED-SHA", "TLS-DH-DSS-WITH-SEED-CBC-SHA"},
114  {"DHE-DSS-AES128-GCM-SHA256", "TLS-DHE-DSS-WITH-AES-128-GCM-SHA256"},
115  {"DHE-DSS-AES128-SHA256", "TLS-DHE-DSS-WITH-AES-128-CBC-SHA256"},
116  {"DHE-DSS-AES128-SHA", "TLS-DHE-DSS-WITH-AES-128-CBC-SHA"},
117  {"DHE-DSS-AES256-GCM-SHA384", "TLS-DHE-DSS-WITH-AES-256-GCM-SHA384"},
118  {"DHE-DSS-AES256-SHA256", "TLS-DHE-DSS-WITH-AES-256-CBC-SHA256"},
119  {"DHE-DSS-AES256-SHA", "TLS-DHE-DSS-WITH-AES-256-CBC-SHA"},
120  {"DHE-DSS-CAMELLIA128-SHA256", "TLS-DHE-DSS-WITH-CAMELLIA-128-CBC-SHA256"},
121  {"DHE-DSS-CAMELLIA128-SHA", "TLS-DHE-DSS-WITH-CAMELLIA-128-CBC-SHA"},
122  {"DHE-DSS-CAMELLIA256-SHA256", "TLS-DHE-DSS-WITH-CAMELLIA-256-CBC-SHA256"},
123  {"DHE-DSS-CAMELLIA256-SHA", "TLS-DHE-DSS-WITH-CAMELLIA-256-CBC-SHA"},
124  {"DHE-DSS-SEED-SHA", "TLS-DHE-DSS-WITH-SEED-CBC-SHA"},
125  {"DHE-RSA-AES128-GCM-SHA256", "TLS-DHE-RSA-WITH-AES-128-GCM-SHA256"},
126  {"DHE-RSA-AES128-SHA256", "TLS-DHE-RSA-WITH-AES-128-CBC-SHA256"},
127  {"DHE-RSA-AES128-SHA", "TLS-DHE-RSA-WITH-AES-128-CBC-SHA"},
128  {"DHE-RSA-AES256-GCM-SHA384", "TLS-DHE-RSA-WITH-AES-256-GCM-SHA384"},
129  {"DHE-RSA-AES256-SHA256", "TLS-DHE-RSA-WITH-AES-256-CBC-SHA256"},
130  {"DHE-RSA-AES256-SHA", "TLS-DHE-RSA-WITH-AES-256-CBC-SHA"},
131  {"DHE-RSA-CAMELLIA128-SHA256", "TLS-DHE-RSA-WITH-CAMELLIA-128-CBC-SHA256"},
132  {"DHE-RSA-CAMELLIA128-SHA", "TLS-DHE-RSA-WITH-CAMELLIA-128-CBC-SHA"},
133  {"DHE-RSA-CAMELLIA256-SHA256", "TLS-DHE-RSA-WITH-CAMELLIA-256-CBC-SHA256"},
134  {"DHE-RSA-CAMELLIA256-SHA", "TLS-DHE-RSA-WITH-CAMELLIA-256-CBC-SHA"},
135  {"DHE-RSA-CHACHA20-POLY1305", "TLS-DHE-RSA-WITH-CHACHA20-POLY1305-SHA256"},
136  {"DHE-RSA-SEED-SHA", "TLS-DHE-RSA-WITH-SEED-CBC-SHA"},
137  {"DH-RSA-SEED-SHA", "TLS-DH-RSA-WITH-SEED-CBC-SHA"},
138  {"ECDH-ECDSA-AES128-GCM-SHA256", "TLS-ECDH-ECDSA-WITH-AES-128-GCM-SHA256"},
139  {"ECDH-ECDSA-AES128-SHA256", "TLS-ECDH-ECDSA-WITH-AES-128-CBC-SHA256"},
140  {"ECDH-ECDSA-AES128-SHA", "TLS-ECDH-ECDSA-WITH-AES-128-CBC-SHA"},
141  {"ECDH-ECDSA-AES256-GCM-SHA384", "TLS-ECDH-ECDSA-WITH-AES-256-GCM-SHA384"},
142  {"ECDH-ECDSA-AES256-SHA256", "TLS-ECDH-ECDSA-WITH-AES-256-CBC-SHA256"},
143  {"ECDH-ECDSA-AES256-SHA384", "TLS-ECDH-ECDSA-WITH-AES-256-CBC-SHA384"},
144  {"ECDH-ECDSA-AES256-SHA", "TLS-ECDH-ECDSA-WITH-AES-256-CBC-SHA"},
145  {"ECDH-ECDSA-CAMELLIA128-SHA256", "TLS-ECDH-ECDSA-WITH-CAMELLIA-128-CBC-SHA256"},
146  {"ECDH-ECDSA-CAMELLIA128-SHA", "TLS-ECDH-ECDSA-WITH-CAMELLIA-128-CBC-SHA"},
147  {"ECDH-ECDSA-CAMELLIA256-SHA256", "TLS-ECDH-ECDSA-WITH-CAMELLIA-256-CBC-SHA256"},
148  {"ECDH-ECDSA-CAMELLIA256-SHA", "TLS-ECDH-ECDSA-WITH-CAMELLIA-256-CBC-SHA"},
149  {"ECDH-ECDSA-DES-CBC3-SHA", "TLS-ECDH-ECDSA-WITH-3DES-EDE-CBC-SHA"},
150  {"ECDH-ECDSA-DES-CBC-SHA", "TLS-ECDH-ECDSA-WITH-DES-CBC-SHA"},
151  {"ECDH-ECDSA-RC4-SHA", "TLS-ECDH-ECDSA-WITH-RC4-128-SHA"},
152  {"ECDHE-ECDSA-AES128-GCM-SHA256", "TLS-ECDHE-ECDSA-WITH-AES-128-GCM-SHA256"},
153  {"ECDHE-ECDSA-AES128-SHA256", "TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA256"},
154  {"ECDHE-ECDSA-AES128-SHA384", "TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA384"},
155  {"ECDHE-ECDSA-AES128-SHA", "TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA"},
156  {"ECDHE-ECDSA-AES256-GCM-SHA384", "TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384"},
157  {"ECDHE-ECDSA-AES256-SHA256", "TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA256"},
158  {"ECDHE-ECDSA-AES256-SHA384", "TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA384"},
159  {"ECDHE-ECDSA-AES256-SHA", "TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA"},
160  {"ECDHE-ECDSA-CAMELLIA128-SHA256", "TLS-ECDHE-ECDSA-WITH-CAMELLIA-128-CBC-SHA256"},
161  {"ECDHE-ECDSA-CAMELLIA128-SHA", "TLS-ECDHE-ECDSA-WITH-CAMELLIA-128-CBC-SHA"},
162  {"ECDHE-ECDSA-CAMELLIA256-SHA256", "TLS-ECDHE-ECDSA-WITH-CAMELLIA-256-CBC-SHA256"},
163  {"ECDHE-ECDSA-CAMELLIA256-SHA", "TLS-ECDHE-ECDSA-WITH-CAMELLIA-256-CBC-SHA"},
164  {"ECDHE-ECDSA-CHACHA20-POLY1305", "TLS-ECDHE-ECDSA-WITH-CHACHA20-POLY1305-SHA256"},
165  {"ECDHE-ECDSA-DES-CBC3-SHA", "TLS-ECDHE-ECDSA-WITH-3DES-EDE-CBC-SHA"},
166  {"ECDHE-ECDSA-DES-CBC-SHA", "TLS-ECDHE-ECDSA-WITH-DES-CBC-SHA"},
167  {"ECDHE-ECDSA-RC4-SHA", "TLS-ECDHE-ECDSA-WITH-RC4-128-SHA"},
168  {"ECDHE-RSA-AES128-GCM-SHA256", "TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256"},
169  {"ECDHE-RSA-AES128-SHA256", "TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA256"},
170  {"ECDHE-RSA-AES128-SHA384", "TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA384"},
171  {"ECDHE-RSA-AES128-SHA", "TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA"},
172  {"ECDHE-RSA-AES256-GCM-SHA384", "TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384"},
173  {"ECDHE-RSA-AES256-SHA256", "TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA256"},
174  {"ECDHE-RSA-AES256-SHA384", "TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA384"},
175  {"ECDHE-RSA-AES256-SHA", "TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA"},
176  {"ECDHE-RSA-CAMELLIA128-SHA256", "TLS-ECDHE-RSA-WITH-CAMELLIA-128-CBC-SHA256"},
177  {"ECDHE-RSA-CAMELLIA128-SHA", "TLS-ECDHE-RSA-WITH-CAMELLIA-128-CBC-SHA"},
178  {"ECDHE-RSA-CAMELLIA256-SHA256", "TLS-ECDHE-RSA-WITH-CAMELLIA-256-CBC-SHA256"},
179  {"ECDHE-RSA-CAMELLIA256-SHA", "TLS-ECDHE-RSA-WITH-CAMELLIA-256-CBC-SHA"},
180  {"ECDHE-RSA-CHACHA20-POLY1305", "TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256"},
181  {"ECDHE-RSA-DES-CBC3-SHA", "TLS-ECDHE-RSA-WITH-3DES-EDE-CBC-SHA"},
182  {"ECDHE-RSA-DES-CBC-SHA", "TLS-ECDHE-RSA-WITH-DES-CBC-SHA"},
183  {"ECDHE-RSA-RC4-SHA", "TLS-ECDHE-RSA-WITH-RC4-128-SHA"},
184  {"ECDH-RSA-AES128-GCM-SHA256", "TLS-ECDH-RSA-WITH-AES-128-GCM-SHA256"},
185  {"ECDH-RSA-AES128-SHA256", "TLS-ECDH-RSA-WITH-AES-128-CBC-SHA256"},
186  {"ECDH-RSA-AES128-SHA384", "TLS-ECDH-RSA-WITH-AES-128-CBC-SHA384"},
187  {"ECDH-RSA-AES128-SHA", "TLS-ECDH-RSA-WITH-AES-128-CBC-SHA"},
188  {"ECDH-RSA-AES256-GCM-SHA384", "TLS-ECDH-RSA-WITH-AES-256-GCM-SHA384"},
189  {"ECDH-RSA-AES256-SHA256", "TLS-ECDH-RSA-WITH-AES-256-CBC-SHA256"},
190  {"ECDH-RSA-AES256-SHA384", "TLS-ECDH-RSA-WITH-AES-256-CBC-SHA384"},
191  {"ECDH-RSA-AES256-SHA", "TLS-ECDH-RSA-WITH-AES-256-CBC-SHA"},
192  {"ECDH-RSA-CAMELLIA128-SHA256", "TLS-ECDH-RSA-WITH-CAMELLIA-128-CBC-SHA256"},
193  {"ECDH-RSA-CAMELLIA128-SHA", "TLS-ECDH-RSA-WITH-CAMELLIA-128-CBC-SHA"},
194  {"ECDH-RSA-CAMELLIA256-SHA256", "TLS-ECDH-RSA-WITH-CAMELLIA-256-CBC-SHA256"},
195  {"ECDH-RSA-CAMELLIA256-SHA", "TLS-ECDH-RSA-WITH-CAMELLIA-256-CBC-SHA"},
196  {"ECDH-RSA-DES-CBC3-SHA", "TLS-ECDH-RSA-WITH-3DES-EDE-CBC-SHA"},
197  {"ECDH-RSA-DES-CBC-SHA", "TLS-ECDH-RSA-WITH-DES-CBC-SHA"},
198  {"ECDH-RSA-RC4-SHA", "TLS-ECDH-RSA-WITH-RC4-128-SHA"},
199  {"EDH-DSS-DES-CBC3-SHA", "TLS-DHE-DSS-WITH-3DES-EDE-CBC-SHA"},
200  {"EDH-DSS-DES-CBC-SHA", "TLS-DHE-DSS-WITH-DES-CBC-SHA"},
201  {"EDH-RSA-DES-CBC3-SHA", "TLS-DHE-RSA-WITH-3DES-EDE-CBC-SHA"},
202  {"EDH-RSA-DES-CBC-SHA", "TLS-DHE-RSA-WITH-DES-CBC-SHA"},
203  {"EXP-DES-CBC-SHA", "TLS-RSA-EXPORT-WITH-DES40-CBC-SHA"},
204  {"EXP-EDH-DSS-DES-CBC-SHA", "TLS-DH-DSS-EXPORT-WITH-DES40-CBC-SHA"},
205  {"EXP-EDH-RSA-DES-CBC-SHA", "TLS-DH-RSA-EXPORT-WITH-DES40-CBC-SHA"},
206  {"EXP-RC2-CBC-MD5", "TLS-RSA-EXPORT-WITH-RC2-CBC-40-MD5"},
207  {"EXP-RC4-MD5", "TLS-RSA-EXPORT-WITH-RC4-40-MD5"},
208  {"NULL-MD5", "TLS-RSA-WITH-NULL-MD5"},
209  {"NULL-SHA256", "TLS-RSA-WITH-NULL-SHA256"},
210  {"NULL-SHA", "TLS-RSA-WITH-NULL-SHA"},
211  {"PSK-3DES-EDE-CBC-SHA", "TLS-PSK-WITH-3DES-EDE-CBC-SHA"},
212  {"PSK-AES128-CBC-SHA", "TLS-PSK-WITH-AES-128-CBC-SHA"},
213  {"PSK-AES256-CBC-SHA", "TLS-PSK-WITH-AES-256-CBC-SHA"},
214  {"PSK-RC4-SHA", "TLS-PSK-WITH-RC4-128-SHA"},
215  {"RC4-MD5", "TLS-RSA-WITH-RC4-128-MD5"},
216  {"RC4-SHA", "TLS-RSA-WITH-RC4-128-SHA"},
217  {"SEED-SHA", "TLS-RSA-WITH-SEED-CBC-SHA"},
218  {"SRP-DSS-3DES-EDE-CBC-SHA", "TLS-SRP-SHA-DSS-WITH-3DES-EDE-CBC-SHA"},
219  {"SRP-DSS-AES-128-CBC-SHA", "TLS-SRP-SHA-DSS-WITH-AES-128-CBC-SHA"},
220  {"SRP-DSS-AES-256-CBC-SHA", "TLS-SRP-SHA-DSS-WITH-AES-256-CBC-SHA"},
221  {"SRP-RSA-3DES-EDE-CBC-SHA", "TLS-SRP-SHA-RSA-WITH-3DES-EDE-CBC-SHA"},
222  {"SRP-RSA-AES-128-CBC-SHA", "TLS-SRP-SHA-RSA-WITH-AES-128-CBC-SHA"},
223  {"SRP-RSA-AES-256-CBC-SHA", "TLS-SRP-SHA-RSA-WITH-AES-256-CBC-SHA"},
224 #ifdef ENABLE_CRYPTO_OPENSSL
225  /* OpenSSL-specific group names */
226  {"DEFAULT", "DEFAULT"},
227  {"ALL", "ALL"},
228  {"HIGH", "HIGH"}, {"!HIGH", "!HIGH"},
229  {"MEDIUM", "MEDIUM"}, {"!MEDIUM", "!MEDIUM"},
230  {"LOW", "LOW"}, {"!LOW", "!LOW"},
231  {"ECDH", "ECDH"}, {"!ECDH", "!ECDH"},
232  {"ECDSA", "ECDSA"}, {"!ECDSA", "!ECDSA"},
233  {"EDH", "EDH"}, {"!EDH", "!EDH"},
234  {"EXP", "EXP"}, {"!EXP", "!EXP"},
235  {"RSA", "RSA"}, {"!RSA", "!RSA"},
236  {"kRSA", "kRSA"}, {"!kRSA", "!kRSA"},
237  {"SRP", "SRP"}, {"!SRP", "!SRP"},
238 #endif
239  {NULL, NULL}
240 };
241 
253 static void
254 key_ctx_update_implicit_iv(struct key_ctx *ctx, uint8_t *key, size_t key_len);
255 
256 const tls_cipher_name_pair *
257 tls_get_cipher_name_pair(const char *cipher_name, size_t len)
258 {
260 
261  while (pair->openssl_name != NULL)
262  {
263  if ((strlen(pair->openssl_name) == len && 0 == memcmp(cipher_name, pair->openssl_name, len))
264  || (strlen(pair->iana_name) == len && 0 == memcmp(cipher_name, pair->iana_name, len)))
265  {
266  return pair;
267  }
268  pair++;
269  }
270 
271  /* No entry found, return NULL */
272  return NULL;
273 }
274 
282 static void
283 tls_limit_reneg_bytes(const cipher_kt_t *cipher, int *reneg_bytes)
284 {
285  if (cipher && cipher_kt_insecure(cipher))
286  {
287  if (*reneg_bytes == -1) /* Not user-specified */
288  {
289  msg(M_WARN, "WARNING: cipher with small block size in use, "
290  "reducing reneg-bytes to 64MB to mitigate SWEET32 attacks.");
291  *reneg_bytes = 64 * 1024 * 1024;
292  }
293  }
294 }
295 
296 /*
297  * Max number of bytes we will add
298  * for data structures common to both
299  * data and control channel packets.
300  * (opcode only).
301  */
302 void
304 {
305  frame_add_to_extra_frame(frame, 1); /* space for opcode */
306 }
307 
308 /*
309  * Max number of bytes we will add
310  * to control channel packet.
311  */
312 static void
313 tls_init_control_channel_frame_parameters(const struct frame *data_channel_frame,
314  struct frame *frame)
315 {
316  /*
317  * frame->extra_frame is already initialized with tls_auth buffer requirements,
318  * if --tls-auth is enabled.
319  */
320 
321  /* inherit link MTU and extra_link from data channel */
322  frame->link_mtu = data_channel_frame->link_mtu;
323  frame->extra_link = data_channel_frame->extra_link;
324 
325  /* set extra_frame */
329 
330  /* set dynamic link MTU to cap control channel packets at 1250 bytes */
331  ASSERT(TUN_LINK_DELTA(frame) < min_int(frame->link_mtu, 1250));
332  frame->link_mtu_dynamic = min_int(frame->link_mtu, 1250) - TUN_LINK_DELTA(frame);
333 }
334 
335 void
337 {
338  tls_init_lib();
339 
340  crypto_init_lib();
341 }
342 
343 void
345 {
347  prng_uninit();
348 
349  tls_free_lib();
350 }
351 
352 /*
353  * OpenSSL library calls pem_password_callback if the
354  * private key is protected by a password.
355  */
356 
357 static struct user_pass passbuf; /* GLOBAL */
358 
359 void
360 pem_password_setup(const char *auth_file)
361 {
362  if (!strlen(passbuf.password))
363  {
365  }
366 }
367 
368 int
369 pem_password_callback(char *buf, int size, int rwflag, void *u)
370 {
371  if (buf)
372  {
373  /* prompt for password even if --askpass wasn't specified */
374  pem_password_setup(NULL);
375  strncpynt(buf, passbuf.password, size);
376  purge_user_pass(&passbuf, false);
377 
378  return strlen(buf);
379  }
380  return 0;
381 }
382 
383 /*
384  * Auth username/password handling
385  */
386 
387 static bool auth_user_pass_enabled; /* GLOBAL */
388 static struct user_pass auth_user_pass; /* GLOBAL */
389 static struct user_pass auth_token; /* GLOBAL */
390 
391 #ifdef ENABLE_MANAGEMENT
392 static char *auth_challenge; /* GLOBAL */
393 #endif
394 
395 void
396 auth_user_pass_setup(const char *auth_file, const struct static_challenge_info *sci)
397 {
398  auth_user_pass_enabled = true;
400  {
401 #ifdef ENABLE_MANAGEMENT
402  if (auth_challenge) /* dynamic challenge/response */
403  {
405  auth_file,
406  UP_TYPE_AUTH,
408  auth_challenge);
409  }
410  else if (sci) /* static challenge response */
411  {
413  if (sci->flags & SC_ECHO)
414  {
416  }
418  auth_file,
419  UP_TYPE_AUTH,
420  flags,
421  sci->challenge_text);
422  }
423  else
424 #endif /* ifdef ENABLE_MANAGEMENT */
426  }
427 }
428 
429 /*
430  * Disable password caching
431  */
432 void
434 {
435  passbuf.nocache = true;
436  auth_user_pass.nocache = true;
437  /* wait for push-reply, because auth-token may still need the username */
439 }
440 
441 /*
442  * Set an authentication token
443  */
444 void
445 ssl_set_auth_token(const char *token)
446 {
448 }
449 
450 /*
451  * Cleans an auth token and checks if it was active
452  */
453 bool
455 {
456  bool wasdefined = auth_token.defined;
457  purge_user_pass(&auth_token, true);
458  return wasdefined;
459 }
460 
461 /*
462  * Forget private key password AND auth-user-pass username/password.
463  */
464 void
465 ssl_purge_auth(const bool auth_user_pass_only)
466 {
467  if (!auth_user_pass_only)
468  {
469 #ifdef ENABLE_PKCS11
470  pkcs11_logout();
471 #endif
472  purge_user_pass(&passbuf, true);
473  }
475 #ifdef ENABLE_MANAGEMENT
477 #endif
478 }
479 
480 #ifdef ENABLE_MANAGEMENT
481 
482 void
484 {
485  free(auth_challenge);
486  auth_challenge = NULL;
487 }
488 
489 void
490 ssl_put_auth_challenge(const char *cr_str)
491 {
493  auth_challenge = string_alloc(cr_str, NULL);
494 }
495 
496 #endif
497 
498 /*
499  * Parse a TLS version string, returning a TLS_VER_x constant.
500  * If version string is not recognized and extra == "or-highest",
501  * return tls_version_max().
502  */
503 int
504 tls_version_parse(const char *vstr, const char *extra)
505 {
506  const int max_version = tls_version_max();
507  if (!strcmp(vstr, "1.0") && TLS_VER_1_0 <= max_version)
508  {
509  return TLS_VER_1_0;
510  }
511  else if (!strcmp(vstr, "1.1") && TLS_VER_1_1 <= max_version)
512  {
513  return TLS_VER_1_1;
514  }
515  else if (!strcmp(vstr, "1.2") && TLS_VER_1_2 <= max_version)
516  {
517  return TLS_VER_1_2;
518  }
519  else if (!strcmp(vstr, "1.3") && TLS_VER_1_3 <= max_version)
520  {
521  return TLS_VER_1_3;
522  }
523  else if (extra && !strcmp(extra, "or-highest"))
524  {
525  return max_version;
526  }
527  else
528  {
529  return TLS_VER_BAD;
530  }
531 }
532 
544 static void
545 tls_ctx_reload_crl(struct tls_root_ctx *ssl_ctx, const char *crl_file,
546  bool crl_file_inline)
547 {
548  /* if something goes wrong with stat(), we'll store 0 as mtime */
549  platform_stat_t crl_stat = {0};
550 
551  /*
552  * an inline CRL can't change at runtime, therefore there is no need to
553  * reload it. It will be reloaded upon config change + SIGHUP.
554  * Use always '1' as dummy timestamp in this case: it will trigger the
555  * first load, but will prevent any future reload.
556  */
557  if (crl_file_inline)
558  {
559  crl_stat.st_mtime = 1;
560  }
561  else if (platform_stat(crl_file, &crl_stat) < 0)
562  {
563  msg(M_WARN, "WARNING: Failed to stat CRL file, not (re)loading CRL.");
564  return;
565  }
566 
567  /*
568  * Store the CRL if this is the first time or if the file was changed since
569  * the last load.
570  * Note: Windows does not support tv_nsec.
571  */
572  if ((ssl_ctx->crl_last_size == crl_stat.st_size)
573  && (ssl_ctx->crl_last_mtime == crl_stat.st_mtime))
574  {
575  return;
576  }
577 
578  ssl_ctx->crl_last_mtime = crl_stat.st_mtime;
579  ssl_ctx->crl_last_size = crl_stat.st_size;
580  backend_tls_ctx_reload_crl(ssl_ctx, crl_file, crl_file_inline);
581 }
582 
583 /*
584  * Initialize SSL context.
585  * All files are in PEM format.
586  */
587 void
588 init_ssl(const struct options *options, struct tls_root_ctx *new_ctx)
589 {
590  ASSERT(NULL != new_ctx);
591 
592  tls_clear_error();
593 
594  if (options->tls_server)
595  {
596  tls_ctx_server_new(new_ctx);
597 
598  if (options->dh_file)
599  {
600  tls_ctx_load_dh_params(new_ctx, options->dh_file,
601  options->dh_file_inline);
602  }
603  }
604  else /* if client */
605  {
606  tls_ctx_client_new(new_ctx);
607  }
608 
609  /* Restrict allowed certificate crypto algorithms */
610  tls_ctx_set_cert_profile(new_ctx, options->tls_cert_profile);
611 
612  /* Allowable ciphers */
613  /* Since @SECLEVEL also influences loading of certificates, set the
614  * cipher restrictions before loading certificates */
615  tls_ctx_restrict_ciphers(new_ctx, options->cipher_list);
617 
618  /* Set the allow groups/curves for TLS if we want to override them */
619  if (options->tls_groups)
620  {
621  tls_ctx_set_tls_groups(new_ctx, options->tls_groups);
622  }
623 
624  if (!tls_ctx_set_options(new_ctx, options->ssl_flags))
625  {
626  goto err;
627  }
628 
629  if (options->pkcs12_file)
630  {
631  if (0 != tls_ctx_load_pkcs12(new_ctx, options->pkcs12_file,
632  options->pkcs12_file_inline, !options->ca_file))
633  {
634  goto err;
635  }
636  }
637 #ifdef ENABLE_PKCS11
638  else if (options->pkcs11_providers[0])
639  {
640  if (!tls_ctx_use_pkcs11(new_ctx, options->pkcs11_id_management, options->pkcs11_id))
641  {
642  msg(M_WARN, "Cannot load certificate \"%s\" using PKCS#11 interface",
643  options->pkcs11_id);
644  goto err;
645  }
646  }
647 #endif
648 #ifdef ENABLE_CRYPTOAPI
649  else if (options->cryptoapi_cert)
650  {
651  tls_ctx_load_cryptoapi(new_ctx, options->cryptoapi_cert);
652  }
653 #endif
654 #ifdef ENABLE_MANAGEMENT
655  else if (options->management_flags & MF_EXTERNAL_CERT)
656  {
657  char *cert = management_query_cert(management,
658  options->management_certificate);
659  tls_ctx_load_cert_file(new_ctx, cert, true);
660  free(cert);
661  }
662 #endif
663  else if (options->cert_file)
664  {
665  tls_ctx_load_cert_file(new_ctx, options->cert_file, options->cert_file_inline);
666  }
667 
668  if (options->priv_key_file)
669  {
670  if (0 != tls_ctx_load_priv_file(new_ctx, options->priv_key_file,
671  options->priv_key_file_inline))
672  {
673  goto err;
674  }
675  }
676 #ifdef ENABLE_MANAGEMENT
677  else if (options->management_flags & MF_EXTERNAL_KEY)
678  {
680  {
681  msg(M_WARN, "Cannot initialize mamagement-external-key");
682  goto err;
683  }
684  }
685 #endif
686 
687  if (options->ca_file || options->ca_path)
688  {
689  tls_ctx_load_ca(new_ctx, options->ca_file, options->ca_file_inline,
690  options->ca_path, options->tls_server);
691  }
692 
693  /* Load extra certificates that are part of our own certificate
694  * chain but shouldn't be included in the verify chain */
695  if (options->extra_certs_file)
696  {
698  }
699 
700  /* Check certificate notBefore and notAfter */
701  tls_ctx_check_cert_time(new_ctx);
702 
703  /* Read CRL */
704  if (options->crl_file && !(options->ssl_flags & SSLF_CRL_VERIFY_DIR))
705  {
706  tls_ctx_reload_crl(new_ctx, options->crl_file, options->crl_file_inline);
707  }
708 
709  /* Once keys and cert are loaded, load ECDH parameters */
710  if (options->tls_server)
711  {
712  tls_ctx_load_ecdh_params(new_ctx, options->ecdh_curve);
713  }
714 
715 #ifdef ENABLE_CRYPTO_MBEDTLS
716  /* Personalise the random by mixing in the certificate */
717  tls_ctx_personalise_random(new_ctx);
718 #endif
719 
720  tls_clear_error();
721  return;
722 
723 err:
724  tls_clear_error();
725  tls_ctx_free(new_ctx);
726  return;
727 }
728 
729 /*
730  * Map internal constants to ascii names.
731  */
732 static const char *
733 state_name(int state)
734 {
735  switch (state)
736  {
737  case S_UNDEF:
738  return "S_UNDEF";
739 
740  case S_INITIAL:
741  return "S_INITIAL";
742 
743  case S_PRE_START:
744  return "S_PRE_START";
745 
746  case S_START:
747  return "S_START";
748 
749  case S_SENT_KEY:
750  return "S_SENT_KEY";
751 
752  case S_GOT_KEY:
753  return "S_GOT_KEY";
754 
755  case S_ACTIVE:
756  return "S_ACTIVE";
757 
758  case S_ERROR:
759  return "S_ERROR";
760 
761  default:
762  return "S_???";
763  }
764 }
765 
766 static const char *
768 {
769  switch (op)
770  {
772  return "P_CONTROL_HARD_RESET_CLIENT_V1";
773 
775  return "P_CONTROL_HARD_RESET_SERVER_V1";
776 
778  return "P_CONTROL_HARD_RESET_CLIENT_V2";
779 
781  return "P_CONTROL_HARD_RESET_SERVER_V2";
782 
784  return "P_CONTROL_HARD_RESET_CLIENT_V3";
785 
787  return "P_CONTROL_SOFT_RESET_V1";
788 
789  case P_CONTROL_V1:
790  return "P_CONTROL_V1";
791 
792  case P_ACK_V1:
793  return "P_ACK_V1";
794 
795  case P_DATA_V1:
796  return "P_DATA_V1";
797 
798  case P_DATA_V2:
799  return "P_DATA_V2";
800 
801  default:
802  return "P_???";
803  }
804 }
805 
806 static const char *
808 {
809  switch (index)
810  {
811  case TM_ACTIVE:
812  return "TM_ACTIVE";
813 
814  case TM_UNTRUSTED:
815  return "TM_UNTRUSTED";
816 
817  case TM_LAME_DUCK:
818  return "TM_LAME_DUCK";
819 
820  default:
821  return "TM_???";
822  }
823 }
824 
825 /*
826  * For debugging.
827  */
828 static const char *
829 print_key_id(struct tls_multi *multi, struct gc_arena *gc)
830 {
831  struct buffer out = alloc_buf_gc(256, gc);
832 
833  for (int i = 0; i < KEY_SCAN_SIZE; ++i)
834  {
835  struct key_state *ks = multi->key_scan[i];
836  buf_printf(&out, " [key#%d state=%s id=%d sid=%s]", i,
837  state_name(ks->state), ks->key_id,
839  }
840 
841  return BSTR(&out);
842 }
843 
844 bool
846 {
849  {
850  return true;
851  }
852 
853  return false;
854 }
855 
879 static void
881 {
882  update_time();
883 
884  CLEAR(*ks);
885 
886  /*
887  * Build TLS object that reads/writes ciphertext
888  * to/from memory BIOs.
889  */
890  key_state_ssl_init(&ks->ks_ssl, &session->opt->ssl_ctx, session->opt->server,
891  session);
892 
893  /* Set control-channel initiation mode */
894  ks->initial_opcode = session->initial_opcode;
896  ks->state = S_INITIAL;
897  ks->key_id = session->key_id;
898 
899  /*
900  * key_id increments to KEY_ID_MASK then recycles back to 1.
901  * This way you know that if key_id is 0, it is the first key.
902  */
903  ++session->key_id;
904  session->key_id &= P_KEY_ID_MASK;
905  if (!session->key_id)
906  {
907  session->key_id = 1;
908  }
909 
910  /* allocate key source material object */
911  ALLOC_OBJ_CLEAR(ks->key_src, struct key_source2);
912 
913  /* allocate reliability objects */
916  ALLOC_OBJ_CLEAR(ks->rec_ack, struct reliable_ack);
917 
918  /* allocate buffers */
921  ks->ack_write_buf = alloc_buf(BUF_SIZE(&session->opt->frame));
922  reliable_init(ks->send_reliable, BUF_SIZE(&session->opt->frame),
924  ks->key_id ? false : session->opt->xmit_hold);
925  reliable_init(ks->rec_reliable, BUF_SIZE(&session->opt->frame),
927  false);
929 
930  /* init packet ID tracker */
931  if (session->opt->replay)
932  {
934  session->opt->replay_window, session->opt->replay_time, "SSL",
935  ks->key_id);
936  }
937 
938  ks->crypto_options.pid_persist = NULL;
939 
940 #ifdef ENABLE_MANAGEMENT
941  ks->mda_key_id = session->opt->mda_context->mda_key_id_counter++;
942 #endif
943 }
944 
945 
959 static void
960 key_state_free(struct key_state *ks, bool clear)
961 {
962  ks->state = S_UNDEF;
963 
965 
969  free_buf(&ks->ack_write_buf);
971 
974 
975  free(ks->rec_ack);
976  free(ks->key_src);
977 
979 
980 #ifdef PLUGIN_DEF_AUTH
982 #endif
983 
984  if (clear)
985  {
986  secure_memzero(ks, sizeof(*ks));
987  }
988 }
989 
1003 static inline bool
1005 {
1006  return (session->opt->auth_user_pass_verify_script
1008 #ifdef ENABLE_MANAGEMENT
1010 #endif
1011  );
1012 }
1013 
1014 
1035 static void
1037 {
1038  struct gc_arena gc = gc_new();
1039 
1040  dmsg(D_TLS_DEBUG, "TLS: tls_session_init: entry");
1041 
1042  CLEAR(*session);
1043 
1044  /* Set options data to point to parent's option structure */
1045  session->opt = &multi->opt;
1046 
1047  /* Randomize session # if it is 0 */
1048  while (!session_id_defined(&session->session_id))
1049  {
1050  session_id_random(&session->session_id);
1051  }
1052 
1053  /* Are we a TLS server or client? */
1054  if (session->opt->server)
1055  {
1057  }
1058  else
1059  {
1060  session->initial_opcode = session->opt->tls_crypt_v2 ?
1062  }
1063 
1064  /* Initialize control channel authentication parameters */
1065  session->tls_wrap = session->opt->tls_wrap;
1066  session->tls_wrap.work = alloc_buf(BUF_SIZE(&session->opt->frame));
1067 
1068  /* initialize packet ID replay window for --tls-auth */
1070  session->opt->replay_window,
1071  session->opt->replay_time,
1072  "TLS_WRAP", session->key_id);
1073 
1074  /* load most recent packet-id to replay protect on --tls-auth */
1076  &session->tls_wrap.opt.packet_id);
1077 
1078  key_state_init(session, &session->key[KS_PRIMARY]);
1079 
1080  dmsg(D_TLS_DEBUG, "TLS: tls_session_init: new session object, sid=%s",
1081  session_id_print(&session->session_id, &gc));
1082 
1083  gc_free(&gc);
1084 }
1085 
1098 static void
1100 {
1101  tls_wrap_free(&session->tls_wrap);
1102 
1103  for (size_t i = 0; i < KS_SIZE; ++i)
1104  {
1105  key_state_free(&session->key[i], false);
1106  }
1107 
1108  free(session->common_name);
1109 
1110  cert_hash_free(session->cert_hash_set);
1111 
1112  if (clear)
1113  {
1114  secure_memzero(session, sizeof(*session));
1115  }
1116 }
1117 
1123 static void
1124 move_session(struct tls_multi *multi, int dest, int src, bool reinit_src)
1125 {
1126  msg(D_TLS_DEBUG_LOW, "TLS: move_session: dest=%s src=%s reinit_src=%d",
1127  session_index_name(dest),
1128  session_index_name(src),
1129  reinit_src);
1130  ASSERT(src != dest);
1131  ASSERT(src >= 0 && src < TM_SIZE);
1132  ASSERT(dest >= 0 && dest < TM_SIZE);
1133  tls_session_free(&multi->session[dest], false);
1134  multi->session[dest] = multi->session[src];
1135 
1136  if (reinit_src)
1137  {
1138  tls_session_init(multi, &multi->session[src]);
1139  }
1140  else
1141  {
1142  secure_memzero(&multi->session[src], sizeof(multi->session[src]));
1143  }
1144 
1145  dmsg(D_TLS_DEBUG, "TLS: move_session: exit");
1146 }
1147 
1148 static void
1150 {
1151  tls_session_free(session, false);
1152  tls_session_init(multi, session);
1153 }
1154 
1155 /*
1156  * Used to determine in how many seconds we should be
1157  * called again.
1158  */
1159 static inline void
1160 compute_earliest_wakeup(interval_t *earliest, interval_t seconds_from_now)
1161 {
1162  if (seconds_from_now < *earliest)
1163  {
1164  *earliest = seconds_from_now;
1165  }
1166  if (*earliest < 0)
1167  {
1168  *earliest = 0;
1169  }
1170 }
1171 
1172 /*
1173  * Return true if "lame duck" or retiring key has expired and can
1174  * no longer be used.
1175  */
1176 static inline bool
1178 {
1179  const struct key_state *lame = &session->key[KS_LAME_DUCK];
1180  if (lame->state >= S_INITIAL)
1181  {
1182  ASSERT(lame->must_die); /* a lame duck key must always have an expiration */
1183  if (now < lame->must_die)
1184  {
1185  compute_earliest_wakeup(wakeup, lame->must_die - now);
1186  return false;
1187  }
1188  else
1189  {
1190  return true;
1191  }
1192  }
1193  else if (lame->state == S_ERROR)
1194  {
1195  return true;
1196  }
1197  else
1198  {
1199  return false;
1200  }
1201 }
1202 
1203 struct tls_multi *
1205 {
1206  struct tls_multi *ret;
1207 
1208  ALLOC_OBJ_CLEAR(ret, struct tls_multi);
1209 
1210  /* get command line derived options */
1211  ret->opt = *tls_options;
1212 
1213  /* set up list of keys to be scanned by data channel encrypt and decrypt routines */
1214  ASSERT(SIZE(ret->key_scan) == 3);
1215  ret->key_scan[0] = &ret->session[TM_ACTIVE].key[KS_PRIMARY];
1216  ret->key_scan[1] = &ret->session[TM_ACTIVE].key[KS_LAME_DUCK];
1217  ret->key_scan[2] = &ret->session[TM_LAME_DUCK].key[KS_LAME_DUCK];
1218 
1219  return ret;
1220 }
1221 
1222 void
1223 tls_multi_init_finalize(struct tls_multi *multi, const struct frame *frame)
1224 {
1226 
1227  /* initialize the active and untrusted sessions */
1228 
1229  tls_session_init(multi, &multi->session[TM_ACTIVE]);
1230 
1231  if (!multi->opt.single_session)
1232  {
1233  tls_session_init(multi, &multi->session[TM_UNTRUSTED]);
1234  }
1235 }
1236 
1237 /*
1238  * Initialize and finalize a standalone tls-auth verification object.
1239  */
1240 
1241 struct tls_auth_standalone *
1243  struct gc_arena *gc)
1244 {
1245  struct tls_auth_standalone *tas;
1246 
1247  ALLOC_OBJ_CLEAR_GC(tas, struct tls_auth_standalone, gc);
1248 
1249  tas->tls_wrap = tls_options->tls_wrap;
1250 
1251  /*
1252  * Standalone tls-auth is in read-only mode with respect to TLS
1253  * control channel state. After we build a new client instance
1254  * object, we will process this session-initiating packet for real.
1255  */
1257 
1258  /* get initial frame parms, still need to finalize */
1259  tas->frame = tls_options->frame;
1260 
1261  return tas;
1262 }
1263 
1264 void
1266  const struct frame *frame)
1267 {
1269 }
1270 
1271 /*
1272  * Set local and remote option compatibility strings.
1273  * Used to verify compatibility of local and remote option
1274  * sets.
1275  */
1276 void
1278  const char *local,
1279  const char *remote)
1280 {
1281  /* initialize options string */
1282  multi->opt.local_options = local;
1283  multi->opt.remote_options = remote;
1284 }
1285 
1286 /*
1287  * Cleanup a tls_multi structure and free associated memory allocations.
1288  */
1289 void
1290 tls_multi_free(struct tls_multi *multi, bool clear)
1291 {
1292  ASSERT(multi);
1293 
1294  auth_set_client_reason(multi, NULL);
1295 
1296  free(multi->peer_info);
1297  free(multi->locked_cn);
1298  free(multi->locked_username);
1299 
1301 
1302  wipe_auth_token(multi);
1303 
1304  free(multi->remote_ciphername);
1305 
1306  for (int i = 0; i < TM_SIZE; ++i)
1307  {
1308  tls_session_free(&multi->session[i], false);
1309  }
1310 
1311  if (clear)
1312  {
1313  secure_memzero(multi, sizeof(*multi));
1314  }
1315 
1316  free(multi);
1317 }
1318 
1319 
1320 /*
1321  * Move a packet authentication HMAC + related fields to or from the front
1322  * of the buffer so it can be processed by encrypt/decrypt.
1323  */
1324 
1325 /*
1326  * Dependent on hmac size, opcode size, and session_id size.
1327  * Will assert if too small.
1328  */
1329 #define SWAP_BUF_SIZE 256
1330 
1331 static bool
1332 swap_hmac(struct buffer *buf, const struct crypto_options *co, bool incoming)
1333 {
1334  ASSERT(co);
1335 
1336  const struct key_ctx *ctx = (incoming ? &co->key_ctx_bi.decrypt :
1337  &co->key_ctx_bi.encrypt);
1338  ASSERT(ctx->hmac);
1339 
1340  {
1341  /* hmac + packet_id (8 bytes) */
1342  const int hmac_size = hmac_ctx_size(ctx->hmac) + packet_id_size(true);
1343 
1344  /* opcode + session_id */
1345  const int osid_size = 1 + SID_SIZE;
1346 
1347  int e1, e2;
1348  uint8_t *b = BPTR(buf);
1349  uint8_t buf1[SWAP_BUF_SIZE];
1350  uint8_t buf2[SWAP_BUF_SIZE];
1351 
1352  if (incoming)
1353  {
1354  e1 = osid_size;
1355  e2 = hmac_size;
1356  }
1357  else
1358  {
1359  e1 = hmac_size;
1360  e2 = osid_size;
1361  }
1362 
1363  ASSERT(e1 <= SWAP_BUF_SIZE && e2 <= SWAP_BUF_SIZE);
1364 
1365  if (buf->len >= e1 + e2)
1366  {
1367  memcpy(buf1, b, e1);
1368  memcpy(buf2, b + e1, e2);
1369  memcpy(b, buf2, e2);
1370  memcpy(b + e2, buf1, e1);
1371  return true;
1372  }
1373  else
1374  {
1375  return false;
1376  }
1377  }
1378 }
1379 
1380 #undef SWAP_BUF_SIZE
1381 
1382 /*
1383  * Write a control channel authentication record.
1384  */
1385 static void
1387  struct key_state *ks,
1388  struct buffer *buf,
1389  struct link_socket_actual **to_link_addr,
1390  int opcode,
1391  int max_ack,
1392  bool prepend_ack)
1393 {
1394  uint8_t header = ks->key_id | (opcode << P_OPCODE_SHIFT);
1395  struct buffer null = clear_buf();
1396 
1399  (ks->rec_ack, buf, &ks->session_id_remote, max_ack, prepend_ack));
1400 
1401  msg(D_TLS_DEBUG, "%s(): %s", __func__, packet_opcode_name(opcode));
1402 
1403  if (session->tls_wrap.mode == TLS_WRAP_AUTH
1404  || session->tls_wrap.mode == TLS_WRAP_NONE)
1405  {
1406  ASSERT(session_id_write_prepend(&session->session_id, buf));
1407  ASSERT(buf_write_prepend(buf, &header, sizeof(header)));
1408  }
1409  if (session->tls_wrap.mode == TLS_WRAP_AUTH)
1410  {
1411  /* no encryption, only write hmac */
1412  openvpn_encrypt(buf, null, &session->tls_wrap.opt);
1413  ASSERT(swap_hmac(buf, &session->tls_wrap.opt, false));
1414  }
1415  else if (session->tls_wrap.mode == TLS_WRAP_CRYPT)
1416  {
1417  ASSERT(buf_init(&session->tls_wrap.work, buf->offset));
1418  ASSERT(buf_write(&session->tls_wrap.work, &header, sizeof(header)));
1419  ASSERT(session_id_write(&session->session_id, &session->tls_wrap.work));
1420  if (!tls_crypt_wrap(buf, &session->tls_wrap.work, &session->tls_wrap.opt))
1421  {
1422  buf->len = 0;
1423  return;
1424  }
1425 
1426  if (opcode == P_CONTROL_HARD_RESET_CLIENT_V3)
1427  {
1428  if (!buf_copy(&session->tls_wrap.work,
1429  session->tls_wrap.tls_crypt_v2_wkc))
1430  {
1431  msg(D_TLS_ERRORS, "Could not append tls-crypt-v2 client key");
1432  buf->len = 0;
1433  return;
1434  }
1435  }
1436 
1437  /* Don't change the original data in buf, it's used by the reliability
1438  * layer to resend on failure. */
1439  *buf = session->tls_wrap.work;
1440  }
1441  *to_link_addr = &ks->remote_addr;
1442 }
1443 
1444 /*
1445  * Read a control channel authentication record.
1446  */
1447 static bool
1449  struct tls_wrap_ctx *ctx,
1450  const struct link_socket_actual *from,
1451  const struct tls_options *opt)
1452 {
1453  struct gc_arena gc = gc_new();
1454  bool ret = false;
1455 
1456  const uint8_t opcode = *(BPTR(buf)) >> P_OPCODE_SHIFT;
1457  if (opcode == P_CONTROL_HARD_RESET_CLIENT_V3
1458  && !tls_crypt_v2_extract_client_key(buf, ctx, opt))
1459  {
1460  msg(D_TLS_ERRORS,
1461  "TLS Error: can not extract tls-crypt-v2 client key from %s",
1462  print_link_socket_actual(from, &gc));
1463  goto cleanup;
1464  }
1465 
1466  if (ctx->mode == TLS_WRAP_AUTH)
1467  {
1468  struct buffer null = clear_buf();
1469 
1470  /* move the hmac record to the front of the packet */
1471  if (!swap_hmac(buf, &ctx->opt, true))
1472  {
1473  msg(D_TLS_ERRORS,
1474  "TLS Error: cannot locate HMAC in incoming packet from %s",
1475  print_link_socket_actual(from, &gc));
1476  gc_free(&gc);
1477  return false;
1478  }
1479 
1480  /* authenticate only (no decrypt) and remove the hmac record
1481  * from the head of the buffer */
1482  openvpn_decrypt(buf, null, &ctx->opt, NULL, BPTR(buf));
1483  if (!buf->len)
1484  {
1485  msg(D_TLS_ERRORS,
1486  "TLS Error: incoming packet authentication failed from %s",
1487  print_link_socket_actual(from, &gc));
1488  goto cleanup;
1489  }
1490 
1491  }
1492  else if (ctx->mode == TLS_WRAP_CRYPT)
1493  {
1494  struct buffer tmp = alloc_buf_gc(buf_forward_capacity_total(buf), &gc);
1495  if (!tls_crypt_unwrap(buf, &tmp, &ctx->opt))
1496  {
1497  msg(D_TLS_ERRORS, "TLS Error: tls-crypt unwrapping failed from %s",
1498  print_link_socket_actual(from, &gc));
1499  goto cleanup;
1500  }
1501  ASSERT(buf_init(buf, buf->offset));
1502  ASSERT(buf_copy(buf, &tmp));
1503  buf_clear(&tmp);
1504  }
1505  else if (ctx->tls_crypt_v2_server_key.cipher)
1506  {
1507  /* If tls-crypt-v2 is enabled, require *some* wrapping */
1508  msg(D_TLS_ERRORS, "TLS Error: could not determine wrapping from %s",
1509  print_link_socket_actual(from, &gc));
1510  /* TODO Do we want to support using tls-crypt-v2 and no control channel
1511  * wrapping at all simultaneously? That would allow server admins to
1512  * upgrade clients one-by-one without running a second instance, but we
1513  * should not enable it by default because it breaks DoS-protection.
1514  * So, add something like --tls-crypt-v2-allow-insecure-fallback ? */
1515  goto cleanup;
1516  }
1517 
1518  if (ctx->mode == TLS_WRAP_NONE || ctx->mode == TLS_WRAP_AUTH)
1519  {
1520  /* advance buffer pointer past opcode & session_id since our caller
1521  * already read it */
1522  buf_advance(buf, SID_SIZE + 1);
1523  }
1524 
1525  ret = true;
1526 cleanup:
1527  gc_free(&gc);
1528  return ret;
1529 }
1530 
1531 /*
1532  * For debugging, print contents of key_source2 structure.
1533  */
1534 
1535 static void
1537  const char *prefix)
1538 {
1539  struct gc_arena gc = gc_new();
1540 
1541  VALGRIND_MAKE_READABLE((void *)k->pre_master, sizeof(k->pre_master));
1542  VALGRIND_MAKE_READABLE((void *)k->random1, sizeof(k->random1));
1543  VALGRIND_MAKE_READABLE((void *)k->random2, sizeof(k->random2));
1544 
1546  "%s pre_master: %s",
1547  prefix,
1548  format_hex(k->pre_master, sizeof(k->pre_master), 0, &gc));
1550  "%s random1: %s",
1551  prefix,
1552  format_hex(k->random1, sizeof(k->random1), 0, &gc));
1554  "%s random2: %s",
1555  prefix,
1556  format_hex(k->random2, sizeof(k->random2), 0, &gc));
1557 
1558  gc_free(&gc);
1559 }
1560 
1561 static void
1563 {
1564  key_source_print(&k->client, "Client");
1565  key_source_print(&k->server, "Server");
1566 }
1567 
1568 /*
1569  * Generate the hash required by for the \c tls1_PRF function.
1570  *
1571  * @param md_kt Message digest to use
1572  * @param sec Secret to base the hash on
1573  * @param sec_len Length of the secret
1574  * @param seed Seed to hash
1575  * @param seed_len Length of the seed
1576  * @param out Output buffer
1577  * @param olen Length of the output buffer
1578  */
1579 static void
1580 tls1_P_hash(const md_kt_t *md_kt,
1581  const uint8_t *sec,
1582  int sec_len,
1583  const uint8_t *seed,
1584  int seed_len,
1585  uint8_t *out,
1586  int olen)
1587 {
1588  struct gc_arena gc = gc_new();
1590 
1591 #ifdef ENABLE_DEBUG
1592  const int olen_orig = olen;
1593  const uint8_t *out_orig = out;
1594 #endif
1595 
1596  hmac_ctx_t *ctx = hmac_ctx_new();
1597  hmac_ctx_t *ctx_tmp = hmac_ctx_new();
1598 
1599  dmsg(D_SHOW_KEY_SOURCE, "tls1_P_hash sec: %s", format_hex(sec, sec_len, 0, &gc));
1600  dmsg(D_SHOW_KEY_SOURCE, "tls1_P_hash seed: %s", format_hex(seed, seed_len, 0, &gc));
1601 
1602  int chunk = md_kt_size(md_kt);
1603  unsigned int A1_len = md_kt_size(md_kt);
1604 
1605  hmac_ctx_init(ctx, sec, sec_len, md_kt);
1606  hmac_ctx_init(ctx_tmp, sec, sec_len, md_kt);
1607 
1608  hmac_ctx_update(ctx,seed,seed_len);
1609  hmac_ctx_final(ctx, A1);
1610 
1611  for (;; )
1612  {
1613  hmac_ctx_reset(ctx);
1614  hmac_ctx_reset(ctx_tmp);
1615  hmac_ctx_update(ctx,A1,A1_len);
1616  hmac_ctx_update(ctx_tmp,A1,A1_len);
1617  hmac_ctx_update(ctx,seed,seed_len);
1618 
1619  if (olen > chunk)
1620  {
1621  hmac_ctx_final(ctx, out);
1622  out += chunk;
1623  olen -= chunk;
1624  hmac_ctx_final(ctx_tmp, A1); /* calc the next A1 value */
1625  }
1626  else /* last one */
1627  {
1628  hmac_ctx_final(ctx, A1);
1629  memcpy(out,A1,olen);
1630  break;
1631  }
1632  }
1633  hmac_ctx_cleanup(ctx);
1634  hmac_ctx_free(ctx);
1635  hmac_ctx_cleanup(ctx_tmp);
1636  hmac_ctx_free(ctx_tmp);
1637  secure_memzero(A1, sizeof(A1));
1638 
1639  dmsg(D_SHOW_KEY_SOURCE, "tls1_P_hash out: %s", format_hex(out_orig, olen_orig, 0, &gc));
1640  gc_free(&gc);
1641 }
1642 
1643 /*
1644  * Use the TLS PRF function for generating data channel keys.
1645  * This code is based on the OpenSSL library.
1646  *
1647  * TLS generates keys as such:
1648  *
1649  * master_secret[48] = PRF(pre_master_secret[48], "master secret",
1650  * ClientHello.random[32] + ServerHello.random[32])
1651  *
1652  * key_block[] = PRF(SecurityParameters.master_secret[48],
1653  * "key expansion",
1654  * SecurityParameters.server_random[32] +
1655  * SecurityParameters.client_random[32]);
1656  *
1657  * Notes:
1658  *
1659  * (1) key_block contains a full set of 4 keys.
1660  * (2) The pre-master secret is generated by the client.
1661  */
1662 static void
1663 tls1_PRF(const uint8_t *label,
1664  int label_len,
1665  const uint8_t *sec,
1666  int slen,
1667  uint8_t *out1,
1668  int olen)
1669 {
1670  struct gc_arena gc = gc_new();
1671  const md_kt_t *md5 = md_kt_get("MD5");
1672  const md_kt_t *sha1 = md_kt_get("SHA1");
1673 
1674  uint8_t *out2 = (uint8_t *) gc_malloc(olen, false, &gc);
1675 
1676  int len = slen/2;
1677  const uint8_t *S1 = sec;
1678  const uint8_t *S2 = &(sec[len]);
1679  len += (slen&1); /* add for odd, make longer */
1680 
1681  tls1_P_hash(md5,S1,len,label,label_len,out1,olen);
1682  tls1_P_hash(sha1,S2,len,label,label_len,out2,olen);
1683 
1684  for (int i = 0; i<olen; i++)
1685  {
1686  out1[i] ^= out2[i];
1687  }
1688 
1689  secure_memzero(out2, olen);
1690 
1691  dmsg(D_SHOW_KEY_SOURCE, "tls1_PRF out[%d]: %s", olen, format_hex(out1, olen, 0, &gc));
1692 
1693  gc_free(&gc);
1694 }
1695 
1696 static void
1697 openvpn_PRF(const uint8_t *secret,
1698  int secret_len,
1699  const char *label,
1700  const uint8_t *client_seed,
1701  int client_seed_len,
1702  const uint8_t *server_seed,
1703  int server_seed_len,
1704  const struct session_id *client_sid,
1705  const struct session_id *server_sid,
1706  uint8_t *output,
1707  int output_len)
1708 {
1709  /* concatenate seed components */
1710 
1711  struct buffer seed = alloc_buf(strlen(label)
1712  + client_seed_len
1713  + server_seed_len
1714  + SID_SIZE * 2);
1715 
1716  ASSERT(buf_write(&seed, label, strlen(label)));
1717  ASSERT(buf_write(&seed, client_seed, client_seed_len));
1718  ASSERT(buf_write(&seed, server_seed, server_seed_len));
1719 
1720  if (client_sid)
1721  {
1722  ASSERT(buf_write(&seed, client_sid->id, SID_SIZE));
1723  }
1724  if (server_sid)
1725  {
1726  ASSERT(buf_write(&seed, server_sid->id, SID_SIZE));
1727  }
1728 
1729  /* compute PRF */
1730  tls1_PRF(BPTR(&seed), BLEN(&seed), secret, secret_len, output, output_len);
1731 
1732  buf_clear(&seed);
1733  free_buf(&seed);
1734 
1735  VALGRIND_MAKE_READABLE((void *)output, output_len);
1736 }
1737 
1738 static void
1740  const struct key_type *key_type,
1741  bool server,
1742  struct key2 *key2)
1743 {
1744  /* Initialize key contexts */
1745  int key_direction = server ? KEY_DIRECTION_INVERSE : KEY_DIRECTION_NORMAL;
1746  init_key_ctx_bi(key, key2, key_direction, key_type, "Data Channel");
1747 
1748  /* Initialize implicit IVs */
1749  key_ctx_update_implicit_iv(&key->encrypt, (*key2).keys[(int)server].hmac,
1751  key_ctx_update_implicit_iv(&key->decrypt, (*key2).keys[1-(int)server].hmac,
1753 
1754 }
1755 
1756 static bool
1758 {
1760  strlen(EXPORT_KEY_DATA_LABEL),
1761  key2->keys, sizeof(key2->keys)))
1762  {
1763  return false;
1764  }
1765  key2->n = 2;
1766 
1767  return true;
1768 }
1769 
1770 static struct key2
1772 {
1773  uint8_t master[48] = { 0 };
1774 
1775  const struct key_state *ks = &session->key[KS_PRIMARY];
1776  const struct key_source2 *key_src = ks->key_src;
1777 
1778  const struct session_id *client_sid = session->opt->server ?
1779  &ks->session_id_remote : &session->session_id;
1780  const struct session_id *server_sid = !session->opt->server ?
1781  &ks->session_id_remote : &session->session_id;
1782 
1783  /* debugging print of source key material */
1784  key_source2_print(key_src);
1785 
1786  /* compute master secret */
1787  openvpn_PRF(key_src->client.pre_master,
1788  sizeof(key_src->client.pre_master),
1789  KEY_EXPANSION_ID " master secret",
1790  key_src->client.random1,
1791  sizeof(key_src->client.random1),
1792  key_src->server.random1,
1793  sizeof(key_src->server.random1),
1794  NULL,
1795  NULL,
1796  master,
1797  sizeof(master));
1798 
1799  struct key2 key2;
1800  /* compute key expansion */
1801  openvpn_PRF(master,
1802  sizeof(master),
1803  KEY_EXPANSION_ID " key expansion",
1804  key_src->client.random2,
1805  sizeof(key_src->client.random2),
1806  key_src->server.random2,
1807  sizeof(key_src->server.random2),
1808  client_sid,
1809  server_sid,
1810  (uint8_t *)key2.keys,
1811  sizeof(key2.keys));
1812  secure_memzero(&master, sizeof(master));
1813 
1814  /*
1815  * fixup_key only correctly sets DES parity bits if the cipher is a
1816  * DES variant.
1817  *
1818  * The newer OpenSSL and mbed TLS libraries (those that support EKM)
1819  * ignore these bits.
1820  *
1821  * We keep the DES fixup here as compatibility.
1822  * OpenVPN3 never did this fixup anyway. So this code is *probably* not
1823  * required but we keep it for compatibility until we remove DES support
1824  * since it does not hurt either.
1825  */
1826  for (int i = 0; i < 2; ++i)
1827  {
1828  fixup_key(&key2.keys[i], &session->opt->key_type);
1829  }
1830  key2.n = 2;
1831 
1832  return key2;
1833 }
1834 
1835 /*
1836  * Using source entropy from local and remote hosts, mix into
1837  * master key.
1838  */
1839 static bool
1841  struct tls_session *session)
1842 {
1843  bool ret = false;
1844  struct key2 key2;
1845 
1846  if (key->initialized)
1847  {
1848  msg(D_TLS_ERRORS, "TLS Error: key already initialized");
1849  goto exit;
1850  }
1851 
1852  bool server = session->opt->server;
1853 
1855  {
1856  if (!generate_key_expansion_tls_export(session, &key2))
1857  {
1858  msg(D_TLS_ERRORS, "TLS Error: Keying material export failed");
1859  goto exit;
1860  }
1861  }
1862  else
1863  {
1864  key2 = generate_key_expansion_openvpn_prf(session);
1865  }
1866 
1867  key2_print(&key2, &session->opt->key_type,
1868  "Master Encrypt", "Master Decrypt");
1869 
1870  /* check for weak keys */
1871  for (int i = 0; i < 2; ++i)
1872  {
1873  if (!check_key(&key2.keys[i], &session->opt->key_type))
1874  {
1875  msg(D_TLS_ERRORS, "TLS Error: Bad dynamic key generated");
1876  goto exit;
1877  }
1878  }
1879  init_key_contexts(key, &session->opt->key_type, server, &key2);
1880  ret = true;
1881 
1882 exit:
1883  secure_memzero(&key2, sizeof(key2));
1884 
1885  return ret;
1886 }
1887 
1888 static void
1889 key_ctx_update_implicit_iv(struct key_ctx *ctx, uint8_t *key, size_t key_len)
1890 {
1891  const cipher_kt_t *cipher_kt = cipher_ctx_get_cipher_kt(ctx->cipher);
1892 
1893  /* Only use implicit IV in AEAD cipher mode, where HMAC key is not used */
1894  if (cipher_kt_mode_aead(cipher_kt))
1895  {
1896  size_t impl_iv_len = 0;
1898  impl_iv_len = cipher_kt_iv_size(cipher_kt) - sizeof(packet_id_type);
1899  ASSERT(impl_iv_len <= OPENVPN_MAX_IV_LENGTH);
1900  ASSERT(impl_iv_len <= key_len);
1901  memcpy(ctx->implicit_iv, key, impl_iv_len);
1902  ctx->implicit_iv_len = impl_iv_len;
1903  }
1904 }
1905 
1912 static bool
1914 {
1915  bool ret = false;
1916  struct key_state *ks = &session->key[KS_PRIMARY]; /* primary key */
1917 
1918  if (ks->authenticated == KS_AUTH_FALSE)
1919  {
1920  msg(D_TLS_ERRORS, "TLS Error: key_state not authenticated");
1921  goto cleanup;
1922  }
1923 
1924  ks->crypto_options.flags = session->opt->crypto_flags;
1925 
1926  if (!generate_key_expansion(&ks->crypto_options.key_ctx_bi, session))
1927  {
1928  msg(D_TLS_ERRORS, "TLS Error: generate_key_expansion failed");
1929  goto cleanup;
1930  }
1932  &session->opt->renegotiate_bytes);
1933 
1934  ret = true;
1935 cleanup:
1936  secure_memzero(ks->key_src, sizeof(*ks->key_src));
1937  return ret;
1938 }
1939 
1940 bool
1942  struct options *options, struct frame *frame,
1943  struct frame *frame_fragment)
1944 {
1946  {
1947  /* keys already generated, nothing to do */
1948  return true;
1949  }
1950 
1951  bool cipher_allowed_as_fallback = options->enable_ncp_fallback
1952  && streq(options->ciphername, session->opt->config_ciphername);
1953 
1954  if (!session->opt->server && !cipher_allowed_as_fallback
1955  && !tls_item_in_cipher_list(options->ciphername, options->ncp_ciphers))
1956  {
1957  msg(D_TLS_ERRORS, "Error: pushed cipher not allowed - %s not in %s",
1958  options->ciphername, options->ncp_ciphers);
1959  /* undo cipher push, abort connection setup */
1960  options->ciphername = session->opt->config_ciphername;
1961  return false;
1962  }
1963 
1964  if (options->data_channel_use_ekm)
1965  {
1967  }
1968 
1969  if (strcmp(options->ciphername, session->opt->config_ciphername))
1970  {
1971  msg(D_HANDSHAKE, "Data Channel: using negotiated cipher '%s'",
1972  options->ciphername);
1973  if (options->keysize)
1974  {
1975  msg(D_HANDSHAKE, "NCP: overriding user-set keysize with default");
1976  options->keysize = 0;
1977  }
1978  }
1979  else
1980  {
1981  /* Very hacky workaround and quick fix for frame calculation
1982  * different when adjusting frame size when the original and new cipher
1983  * are identical to avoid a regression with client without NCP */
1985  }
1986 
1987  init_key_type(&session->opt->key_type, options->ciphername,
1988  options->authname, options->keysize, true, true);
1989 
1990  bool packet_id_long_form = cipher_kt_mode_ofb_cfb(session->opt->key_type.cipher);
1991  session->opt->crypto_flags &= ~(CO_PACKET_ID_LONG_FORM);
1992  if (packet_id_long_form)
1993  {
1995  }
1996 
1997  /* Update frame parameters: undo worst-case overhead, add actual overhead */
1999  crypto_adjust_frame_parameters(frame, &session->opt->key_type,
2000  options->replay, packet_id_long_form);
2001  frame_finalize(frame, options->ce.link_mtu_defined, options->ce.link_mtu,
2002  options->ce.tun_mtu_defined, options->ce.tun_mtu);
2003  frame_init_mssfix(frame, options);
2004  frame_print(frame, D_MTU_INFO, "Data Channel MTU parms");
2005 
2006  /*
2007  * mssfix uses data channel framing, which at this point contains
2008  * actual overhead. Fragmentation logic uses frame_fragment, which
2009  * still contains worst case overhead. Replace it with actual overhead
2010  * to prevent unneeded fragmentation.
2011  */
2012 
2013  if (frame_fragment)
2014  {
2016  crypto_adjust_frame_parameters(frame_fragment, &session->opt->key_type,
2017  options->replay, packet_id_long_form);
2018  frame_set_mtu_dynamic(frame_fragment, options->ce.fragment, SET_MTU_UPPER_BOUND);
2019  frame_print(frame_fragment, D_MTU_INFO, "Fragmentation MTU parms");
2020  }
2021 
2023 }
2024 
2025 static bool
2027  uint8_t *out,
2028  int outlen)
2029 {
2030  if (!rand_bytes(out, outlen))
2031  {
2032  msg(M_FATAL, "ERROR: Random number generator cannot obtain entropy for key generation [SSL]");
2033  }
2034  if (!buf_write(buf, out, outlen))
2035  {
2036  return false;
2037  }
2038  return true;
2039 }
2040 
2041 static bool
2043  struct buffer *buf,
2044  bool server)
2045 {
2046  struct key_source *k = &k2->client;
2047  if (server)
2048  {
2049  k = &k2->server;
2050  }
2051 
2052  CLEAR(*k);
2053 
2054  if (!server)
2055  {
2056  if (!random_bytes_to_buf(buf, k->pre_master, sizeof(k->pre_master)))
2057  {
2058  return false;
2059  }
2060  }
2061 
2062  if (!random_bytes_to_buf(buf, k->random1, sizeof(k->random1)))
2063  {
2064  return false;
2065  }
2066  if (!random_bytes_to_buf(buf, k->random2, sizeof(k->random2)))
2067  {
2068  return false;
2069  }
2070 
2071  return true;
2072 }
2073 
2074 static int
2076  struct buffer *buf,
2077  bool server)
2078 {
2079  struct key_source *k = &k2->client;
2080 
2081  if (!server)
2082  {
2083  k = &k2->server;
2084  }
2085 
2086  CLEAR(*k);
2087 
2088  if (server)
2089  {
2090  if (!buf_read(buf, k->pre_master, sizeof(k->pre_master)))
2091  {
2092  return 0;
2093  }
2094  }
2095 
2096  if (!buf_read(buf, k->random1, sizeof(k->random1)))
2097  {
2098  return 0;
2099  }
2100  if (!buf_read(buf, k->random2, sizeof(k->random2)))
2101  {
2102  return 0;
2103  }
2104 
2105  return 1;
2106 }
2107 
2108 static void
2110 {
2111  struct buffer *b;
2112 
2113  while ((b = buffer_list_peek(ks->paybuf)))
2114  {
2116  buffer_list_pop(ks->paybuf);
2117  }
2118 }
2119 
2120 /* true if no in/out acknowledgements pending */
2121 #define FULL_SYNC \
2122  (reliable_empty(ks->send_reliable) && reliable_ack_empty(ks->rec_ack))
2123 
2124 /*
2125  * Move the active key to the lame duck key and reinitialize the
2126  * active key.
2127  */
2128 static void
2130 {
2131  struct key_state *ks = &session->key[KS_PRIMARY]; /* primary key */
2132  struct key_state *ks_lame = &session->key[KS_LAME_DUCK]; /* retiring key */
2133 
2134  ks->must_die = now + session->opt->transition_window; /* remaining lifetime of old key */
2135  key_state_free(ks_lame, false);
2136  *ks_lame = *ks;
2137 
2138  key_state_init(session, ks);
2139  ks->session_id_remote = ks_lame->session_id_remote;
2140  ks->remote_addr = ks_lame->remote_addr;
2141 }
2142 
2143 /*
2144  * Read/write strings from/to a struct buffer with a u16 length prefix.
2145  */
2146 
2147 static bool
2149 {
2150  if (!buf_write_u16(buf, 0))
2151  {
2152  return false;
2153  }
2154  return true;
2155 }
2156 
2157 static bool
2158 write_string(struct buffer *buf, const char *str, const int maxlen)
2159 {
2160  const int len = strlen(str) + 1;
2161  if (len < 1 || (maxlen >= 0 && len > maxlen))
2162  {
2163  return false;
2164  }
2165  if (!buf_write_u16(buf, len))
2166  {
2167  return false;
2168  }
2169  if (!buf_write(buf, str, len))
2170  {
2171  return false;
2172  }
2173  return true;
2174 }
2175 
2176 static bool
2177 read_string(struct buffer *buf, char *str, const unsigned int capacity)
2178 {
2179  const int len = buf_read_u16(buf);
2180  if (len < 1 || len > (int)capacity)
2181  {
2182  return false;
2183  }
2184  if (!buf_read(buf, str, len))
2185  {
2186  return false;
2187  }
2188  str[len-1] = '\0';
2189  return true;
2190 }
2191 
2192 static char *
2194 {
2195  const int len = buf_read_u16(buf);
2196  char *str;
2197 
2198  if (len < 1)
2199  {
2200  return NULL;
2201  }
2202  str = (char *) malloc(len);
2203  check_malloc_return(str);
2204  if (!buf_read(buf, str, len))
2205  {
2206  free(str);
2207  return NULL;
2208  }
2209  str[len-1] = '\0';
2210  return str;
2211 }
2212 
2213 static bool
2215 {
2216  struct gc_arena gc = gc_new();
2217  bool ret = false;
2218 
2219  if (session->opt->push_peer_info_detail > 0)
2220  {
2221  struct env_set *es = session->opt->es;
2222  struct buffer out = alloc_buf_gc(512*3, &gc);
2223 
2224  /* push version */
2225  buf_printf(&out, "IV_VER=%s\n", PACKAGE_VERSION);
2226 
2227  /* push platform */
2228 #if defined(TARGET_LINUX)
2229  buf_printf(&out, "IV_PLAT=linux\n");
2230 #elif defined(TARGET_SOLARIS)
2231  buf_printf(&out, "IV_PLAT=solaris\n");
2232 #elif defined(TARGET_OPENBSD)
2233  buf_printf(&out, "IV_PLAT=openbsd\n");
2234 #elif defined(TARGET_DARWIN)
2235  buf_printf(&out, "IV_PLAT=mac\n");
2236 #elif defined(TARGET_NETBSD)
2237  buf_printf(&out, "IV_PLAT=netbsd\n");
2238 #elif defined(TARGET_FREEBSD)
2239  buf_printf(&out, "IV_PLAT=freebsd\n");
2240 #elif defined(TARGET_ANDROID)
2241  buf_printf(&out, "IV_PLAT=android\n");
2242 #elif defined(_WIN32)
2243  buf_printf(&out, "IV_PLAT=win\n");
2244 #endif
2245 
2246  /* support for P_DATA_V2 */
2247  int iv_proto = IV_PROTO_DATA_V2;
2248 
2249  /* support for receiving push_reply before sending
2250  * push request, also signal that the client wants
2251  * to get push-reply messages without without requiring a round
2252  * trip for a push request message*/
2253  if (session->opt->pull)
2254  {
2255  iv_proto |= IV_PROTO_REQUEST_PUSH;
2256  }
2257 
2258  /* support for Negotiable Crypto Parameters */
2259  if (session->opt->ncp_enabled
2260  && (session->opt->mode == MODE_SERVER || session->opt->pull))
2261  {
2262  if (tls_item_in_cipher_list("AES-128-GCM", session->opt->config_ncp_ciphers)
2263  && tls_item_in_cipher_list("AES-256-GCM", session->opt->config_ncp_ciphers))
2264  {
2265 
2266  buf_printf(&out, "IV_NCP=2\n");
2267  }
2268  buf_printf(&out, "IV_CIPHERS=%s\n", session->opt->config_ncp_ciphers);
2269 
2270 #ifdef HAVE_EXPORT_KEYING_MATERIAL
2271  iv_proto |= IV_PROTO_TLS_KEY_EXPORT;
2272 #endif
2273  }
2274 
2275  buf_printf(&out, "IV_PROTO=%d\n", iv_proto);
2276 
2277  /* push compression status */
2278 #ifdef USE_COMP
2279  comp_generate_peer_info_string(&session->opt->comp_options, &out);
2280 #endif
2281 
2282  if (session->opt->push_peer_info_detail >= 2)
2283  {
2284  /* push mac addr */
2285  struct route_gateway_info rgi;
2286  get_default_gateway(&rgi, session->opt->net_ctx);
2287  if (rgi.flags & RGI_HWADDR_DEFINED)
2288  {
2289  buf_printf(&out, "IV_HWADDR=%s\n", format_hex_ex(rgi.hwaddr, 6, 0, 1, ":", &gc));
2290  }
2291  buf_printf(&out, "IV_SSL=%s\n", get_ssl_library_version() );
2292 #if defined(_WIN32)
2293  buf_printf(&out, "IV_PLAT_VER=%s\n", win32_version_string(&gc, false));
2294 #endif
2295  }
2296 
2297  /* push env vars that begin with UV_, IV_PLAT_VER and IV_GUI_VER */
2298  for (struct env_item *e = es->list; e != NULL; e = e->next)
2299  {
2300  if (e->string)
2301  {
2302  if ((((strncmp(e->string, "UV_", 3)==0
2303  || strncmp(e->string, "IV_PLAT_VER=", sizeof("IV_PLAT_VER=")-1)==0)
2304  && session->opt->push_peer_info_detail >= 2)
2305  || (strncmp(e->string,"IV_GUI_VER=",sizeof("IV_GUI_VER=")-1)==0)
2306  || (strncmp(e->string,"IV_SSO=",sizeof("IV_SSO=")-1)==0)
2307  )
2308  && buf_safe(&out, strlen(e->string)+1))
2309  {
2310  buf_printf(&out, "%s\n", e->string);
2311  }
2312  }
2313  }
2314 
2315  if (!write_string(buf, BSTR(&out), -1))
2316  {
2317  goto error;
2318  }
2319  }
2320  else
2321  {
2322  if (!write_empty_string(buf)) /* no peer info */
2323  {
2324  goto error;
2325  }
2326  }
2327  ret = true;
2328 
2329 error:
2330  gc_free(&gc);
2331  return ret;
2332 }
2333 
2338 static bool
2340 {
2341  struct key_state *ks = &session->key[KS_PRIMARY]; /* primary key */
2342 
2343  ASSERT(buf_init(buf, 0));
2344 
2345  /* write a uint32 0 */
2346  if (!buf_write_u32(buf, 0))
2347  {
2348  goto error;
2349  }
2350 
2351  /* write key_method + flags */
2352  if (!buf_write_u8(buf, KEY_METHOD_2))
2353  {
2354  goto error;
2355  }
2356 
2357  /* write key source material */
2358  if (!key_source2_randomize_write(ks->key_src, buf, session->opt->server))
2359  {
2360  goto error;
2361  }
2362 
2363  /* write options string */
2364  {
2365  if (!write_string(buf, session->opt->local_options, TLS_OPTIONS_LEN))
2366  {
2367  goto error;
2368  }
2369  }
2370 
2371  /* write username/password if specified */
2372  if (auth_user_pass_enabled)
2373  {
2374 #ifdef ENABLE_MANAGEMENT
2375  auth_user_pass_setup(session->opt->auth_user_pass_file, session->opt->sci);
2376 #else
2377  auth_user_pass_setup(session->opt->auth_user_pass_file, NULL);
2378 #endif
2379  struct user_pass *up = &auth_user_pass;
2380 
2381  /*
2382  * If we have a valid auth-token, send that instead of real
2383  * username/password
2384  */
2385  if (auth_token.defined)
2386  {
2387  up = &auth_token;
2388  }
2389 
2390  if (!write_string(buf, up->username, -1))
2391  {
2392  goto error;
2393  }
2394  else if (!write_string(buf, up->password, -1))
2395  {
2396  goto error;
2397  }
2398  /* if auth-nocache was specified, the auth_user_pass object reaches
2399  * a "complete" state only after having received the push-reply
2400  * message.
2401  *
2402  * For this reason, skip the purge operation here if no push-reply
2403  * message has been received yet.
2404  *
2405  * This normally happens upon first negotiation only.
2406  */
2408  {
2410  }
2411  }
2412  else
2413  {
2414  if (!write_empty_string(buf)) /* no username */
2415  {
2416  goto error;
2417  }
2418  if (!write_empty_string(buf)) /* no password */
2419  {
2420  goto error;
2421  }
2422  }
2423 
2424  if (!push_peer_info(buf, session))
2425  {
2426  goto error;
2427  }
2428 
2429  /* Generate tunnel keys if we're a TLS server.
2430  * If we're a p2mp server and IV_NCP >= 2 is negotiated, the first key
2431  * generation is postponed until after the pull/push, so we can process pushed
2432  * cipher directives.
2433  */
2434  if (session->opt->server && !(session->opt->mode == MODE_SERVER && ks->key_id <= 0))
2435  {
2436  if (ks->authenticated > KS_AUTH_FALSE)
2437  {
2439  {
2440  msg(D_TLS_ERRORS, "TLS Error: server generate_key_expansion failed");
2441  goto error;
2442  }
2443  }
2444  }
2445 
2446  return true;
2447 
2448 error:
2449  msg(D_TLS_ERRORS, "TLS Error: Key Method #2 write failed");
2450  secure_memzero(ks->key_src, sizeof(*ks->key_src));
2451  return false;
2452 }
2453 
2454 static void
2456  struct tls_session *session)
2457 {
2458  if (session->opt->ekm_size > 0)
2459  {
2460  unsigned int size = session->opt->ekm_size;
2461  struct gc_arena gc = gc_new();
2462 
2463  unsigned char *ekm = gc_malloc(session->opt->ekm_size, true, &gc);
2465  session->opt->ekm_label,
2466  session->opt->ekm_label_size,
2467  ekm, session->opt->ekm_size))
2468  {
2469  unsigned int len = (size * 2) + 2;
2470 
2471  const char *key = format_hex_ex(ekm, size, len, 0, NULL, &gc);
2472  setenv_str(session->opt->es, "exported_keying_material", key);
2473 
2474  dmsg(D_TLS_DEBUG_MED, "%s: exported keying material: %s",
2475  __func__, key);
2476  secure_memzero(ekm, size);
2477  }
2478  else
2479  {
2480  msg(M_WARN, "WARNING: Export keying material failed!");
2481  setenv_del(session->opt->es, "exported_keying_material");
2482  }
2483  gc_free(&gc);
2484  }
2485 }
2486 
2491 static bool
2492 key_method_2_read(struct buffer *buf, struct tls_multi *multi, struct tls_session *session)
2493 {
2494  struct key_state *ks = &session->key[KS_PRIMARY]; /* primary key */
2495 
2496  bool username_status, password_status;
2497 
2498  struct gc_arena gc = gc_new();
2499  char *options;
2500  struct user_pass *up = NULL;
2501 
2502  /* allocate temporary objects */
2503  ALLOC_ARRAY_CLEAR_GC(options, char, TLS_OPTIONS_LEN, &gc);
2504 
2505  /* discard leading uint32 */
2506  if (!buf_advance(buf, 4))
2507  {
2508  msg(D_TLS_ERRORS, "TLS ERROR: Plaintext buffer too short (%d bytes).",
2509  buf->len);
2510  goto error;
2511  }
2512 
2513  /* get key method */
2514  int key_method_flags = buf_read_u8(buf);
2515  if ((key_method_flags & KEY_METHOD_MASK) != 2)
2516  {
2517  msg(D_TLS_ERRORS,
2518  "TLS ERROR: Unknown key_method/flags=%d received from remote host",
2519  key_method_flags);
2520  goto error;
2521  }
2522 
2523  /* get key source material (not actual keys yet) */
2524  if (!key_source2_read(ks->key_src, buf, session->opt->server))
2525  {
2526  msg(D_TLS_ERRORS, "TLS Error: Error reading remote data channel key source entropy from plaintext buffer");
2527  goto error;
2528  }
2529 
2530  /* get options */
2531  if (!read_string(buf, options, TLS_OPTIONS_LEN))
2532  {
2533  msg(D_TLS_ERRORS, "TLS Error: Failed to read required OCC options string");
2534  goto error;
2535  }
2536 
2538 
2539  /* always extract username + password fields from buf, even if not
2540  * authenticating for it, because otherwise we can't get at the
2541  * peer_info data which follows behind
2542  */
2543  ALLOC_OBJ_CLEAR_GC(up, struct user_pass, &gc);
2544  username_status = read_string(buf, up->username, USER_PASS_LEN);
2545  password_status = read_string(buf, up->password, USER_PASS_LEN);
2546 
2547  /* get peer info from control channel */
2548  free(multi->peer_info);
2549  multi->peer_info = read_string_alloc(buf);
2550  if (multi->peer_info)
2551  {
2552  output_peer_info_env(session->opt->es, multi->peer_info);
2553  }
2554 
2555  free(multi->remote_ciphername);
2556  multi->remote_ciphername =
2557  options_string_extract_option(options, "cipher", NULL);
2558 
2559  /* In OCC we send '[null-cipher]' instead 'none' */
2560  if (multi->remote_ciphername
2561  && strcmp(multi->remote_ciphername, "[null-cipher]") == 0)
2562  {
2563  free(multi->remote_ciphername);
2564  multi->remote_ciphername = string_alloc("none", NULL);
2565  }
2566 
2567  if (tls_session_user_pass_enabled(session))
2568  {
2569  /* Perform username/password authentication */
2570  if (!username_status || !password_status)
2571  {
2572  CLEAR(*up);
2573  if (!(session->opt->ssl_flags & SSLF_AUTH_USER_PASS_OPTIONAL))
2574  {
2575  msg(D_TLS_ERRORS, "TLS Error: Auth Username/Password was not provided by peer");
2576  goto error;
2577  }
2578  }
2579 
2580  verify_user_pass(up, multi, session);
2581  }
2582  else
2583  {
2584  /* Session verification should have occurred during TLS negotiation*/
2585  if (!session->verified)
2586  {
2587  msg(D_TLS_ERRORS,
2588  "TLS Error: Certificate verification failed (key-method 2)");
2589  goto error;
2590  }
2592  }
2593 
2594  /* clear username and password from memory */
2595  secure_memzero(up, sizeof(*up));
2596 
2597  /* Perform final authentication checks */
2598  if (ks->authenticated > KS_AUTH_FALSE)
2599  {
2600  verify_final_auth_checks(multi, session);
2601  }
2602 
2603  /* check options consistency */
2604  if (!session->opt->disable_occ
2605  && !options_cmp_equal(options, session->opt->remote_options))
2606  {
2607  options_warning(options, session->opt->remote_options);
2608  if (session->opt->ssl_flags & SSLF_OPT_VERIFY)
2609  {
2610  msg(D_TLS_ERRORS, "Option inconsistency warnings triggering disconnect due to --opt-verify");
2612  }
2613  }
2614 
2615  buf_clear(buf);
2616 
2617  /*
2618  * Call OPENVPN_PLUGIN_TLS_FINAL plugin if defined, for final
2619  * veto opportunity over authentication decision.
2620  */
2621  if ((ks->authenticated > KS_AUTH_FALSE)
2623  {
2624  export_user_keying_material(&ks->ks_ssl, session);
2625 
2626  if (plugin_call(session->opt->plugins, OPENVPN_PLUGIN_TLS_FINAL, NULL, NULL, session->opt->es) != OPENVPN_PLUGIN_FUNC_SUCCESS)
2627  {
2629  }
2630 
2631  setenv_del(session->opt->es, "exported_keying_material");
2632  }
2633 
2634  /*
2635  * Generate tunnel keys if we're a client.
2636  * If --pull is enabled, the first key generation is postponed until after the
2637  * pull/push, so we can process pushed cipher directives.
2638  */
2639  if (!session->opt->server && (!session->opt->pull || ks->key_id > 0))
2640  {
2642  {
2643  msg(D_TLS_ERRORS, "TLS Error: client generate_key_expansion failed");
2644  goto error;
2645  }
2646  }
2647 
2648  gc_free(&gc);
2649  return true;
2650 
2651 error:
2653  secure_memzero(ks->key_src, sizeof(*ks->key_src));
2654  if (up)
2655  {
2656  secure_memzero(up, sizeof(*up));
2657  }
2658  buf_clear(buf);
2659  gc_free(&gc);
2660  return false;
2661 }
2662 
2663 static int
2665 {
2666  int ret = o->handshake_window;
2667  const int r2 = o->renegotiate_seconds / 2;
2668 
2669  if (o->renegotiate_seconds && r2 < ret)
2670  {
2671  ret = r2;
2672  }
2673  return ret;
2674 }
2675 
2676 /*
2677  * This is the primary routine for processing TLS stuff inside the
2678  * the main event loop. When this routine exits
2679  * with non-error status, it will set *wakeup to the number of seconds
2680  * when it wants to be called again.
2681  *
2682  * Return value is true if we have placed a packet in *to_link which we
2683  * want to send to our peer.
2684  */
2685 static bool
2686 tls_process(struct tls_multi *multi,
2687  struct tls_session *session,
2688  struct buffer *to_link,
2689  struct link_socket_actual **to_link_addr,
2690  struct link_socket_info *to_link_socket_info,
2691  interval_t *wakeup)
2692 {
2693  struct gc_arena gc = gc_new();
2694  struct buffer *buf;
2695  bool state_change = false;
2696  bool active = false;
2697  struct key_state *ks = &session->key[KS_PRIMARY]; /* primary key */
2698  struct key_state *ks_lame = &session->key[KS_LAME_DUCK]; /* retiring key */
2699 
2700  /* Make sure we were initialized and that we're not in an error state */
2701  ASSERT(ks->state != S_UNDEF);
2702  ASSERT(ks->state != S_ERROR);
2703  ASSERT(session_id_defined(&session->session_id));
2704 
2705  /* Should we trigger a soft reset? -- new key, keeps old key for a while */
2706  if (ks->state >= S_ACTIVE
2707  && ((session->opt->renegotiate_seconds
2708  && now >= ks->established + session->opt->renegotiate_seconds)
2709  || (session->opt->renegotiate_bytes > 0
2710  && ks->n_bytes >= session->opt->renegotiate_bytes)
2711  || (session->opt->renegotiate_packets
2712  && ks->n_packets >= session->opt->renegotiate_packets)
2714  {
2715  msg(D_TLS_DEBUG_LOW, "TLS: soft reset sec=%d/%d bytes=" counter_format
2716  "/%d pkts=" counter_format "/%d",
2717  (int) (now - ks->established), session->opt->renegotiate_seconds,
2718  ks->n_bytes, session->opt->renegotiate_bytes,
2719  ks->n_packets, session->opt->renegotiate_packets);
2720  key_state_soft_reset(session);
2721  }
2722 
2723  /* Kill lame duck key transition_window seconds after primary key negotiation */
2724  if (lame_duck_must_die(session, wakeup))
2725  {
2726  key_state_free(ks_lame, true);
2727  msg(D_TLS_DEBUG_LOW, "TLS: tls_process: killed expiring key");
2728  }
2729 
2730  do
2731  {
2732  update_time();
2733 
2734  dmsg(D_TLS_DEBUG, "TLS: tls_process: chg=%d ks=%s lame=%s to_link->len=%d wakeup=%d",
2735  state_change,
2736  state_name(ks->state),
2737  state_name(ks_lame->state),
2738  to_link->len,
2739  *wakeup);
2740 
2741  state_change = false;
2742 
2743  /*
2744  * TLS activity is finished once we get to S_ACTIVE,
2745  * though we will still process acknowledgements.
2746  *
2747  * CHANGED with 2.0 -> now we may send tunnel configuration
2748  * info over the control channel.
2749  */
2750 
2751  /* Initial handshake */
2752  if (ks->state == S_INITIAL)
2753  {
2755  if (buf)
2756  {
2757  ks->must_negotiate = now + session->opt->handshake_window;
2759 
2760  /* null buffer */
2763 
2764  ks->state = S_PRE_START;
2765  state_change = true;
2766  dmsg(D_TLS_DEBUG, "TLS: Initial Handshake, sid=%s",
2767  session_id_print(&session->session_id, &gc));
2768 
2769 #ifdef ENABLE_MANAGEMENT
2771  {
2774  NULL,
2775  NULL,
2776  NULL,
2777  NULL,
2778  NULL);
2779  }
2780 #endif
2781  }
2782  }
2783 
2784  /* Are we timed out on receive? */
2785  if (now >= ks->must_negotiate && ks->state < S_ACTIVE)
2786  {
2787  msg(D_TLS_ERRORS,
2788  "TLS Error: TLS key negotiation failed to occur within %d seconds (check your network connectivity)",
2789  session->opt->handshake_window);
2790  goto error;
2791  }
2792 
2793  /* Wait for Initial Handshake ACK */
2794  if (ks->state == S_PRE_START && FULL_SYNC)
2795  {
2796  ks->state = S_START;
2797  state_change = true;
2798 
2799  /*
2800  * Attempt CRL reload before TLS negotiation. Won't be performed if
2801  * the file was not modified since the last reload
2802  */
2803  if (session->opt->crl_file
2804  && !(session->opt->ssl_flags & SSLF_CRL_VERIFY_DIR))
2805  {
2806  tls_ctx_reload_crl(&session->opt->ssl_ctx,
2807  session->opt->crl_file, session->opt->crl_file_inline);
2808  }
2809 
2810  /* New connection, remove any old X509 env variables */
2811  tls_x509_clear_env(session->opt->es);
2812 
2813  dmsg(D_TLS_DEBUG_MED, "STATE S_START");
2814  }
2815 
2816  /* Wait for ACK */
2817  if (((ks->state == S_GOT_KEY && !session->opt->server)
2818  || (ks->state == S_SENT_KEY && session->opt->server)))
2819  {
2820  if (FULL_SYNC)
2821  {
2822  ks->established = now;
2823  dmsg(D_TLS_DEBUG_MED, "STATE S_ACTIVE");
2825  {
2826  print_details(&ks->ks_ssl, "Control Channel:");
2827  }
2828  state_change = true;
2829  ks->state = S_ACTIVE;
2830  /* Cancel negotiation timeout */
2831  ks->must_negotiate = 0;
2832  INCR_SUCCESS;
2833 
2834  /* Set outgoing address for data channel packets */
2835  link_socket_set_outgoing_addr(to_link_socket_info, &ks->remote_addr, session->common_name, session->opt->es);
2836 
2837  /* Flush any payload packets that were buffered before our state transitioned to S_ACTIVE */
2839 
2840 #ifdef MEASURE_TLS_HANDSHAKE_STATS
2841  show_tls_performance_stats();
2842 #endif
2843  }
2844  }
2845 
2846  /* Reliable buffer to outgoing TCP/UDP (send up to CONTROL_SEND_ACK_MAX ACKs
2847  * for previously received packets) */
2848  if (!to_link->len && reliable_can_send(ks->send_reliable))
2849  {
2850  int opcode;
2851  struct buffer b;
2852 
2853  buf = reliable_send(ks->send_reliable, &opcode);
2854  ASSERT(buf);
2855  b = *buf;
2856  INCR_SENT;
2857 
2858  write_control_auth(session, ks, &b, to_link_addr, opcode,
2859  CONTROL_SEND_ACK_MAX, true);
2860  *to_link = b;
2861  active = true;
2862  state_change = true;
2863  dmsg(D_TLS_DEBUG, "Reliable -> TCP/UDP");
2864  break;
2865  }
2866 
2867  /* Write incoming ciphertext to TLS object */
2869  if (buf)
2870  {
2871  int status = 0;
2872  if (buf->len)
2873  {
2874  status = key_state_write_ciphertext(&ks->ks_ssl, buf);
2875  if (status == -1)
2876  {
2877  msg(D_TLS_ERRORS,
2878  "TLS Error: Incoming Ciphertext -> TLS object write error");
2879  goto error;
2880  }
2881  }
2882  else
2883  {
2884  status = 1;
2885  }
2886  if (status == 1)
2887  {
2888  reliable_mark_deleted(ks->rec_reliable, buf, true);
2889  state_change = true;
2890  dmsg(D_TLS_DEBUG, "Incoming Ciphertext -> TLS");
2891  }
2892  }
2893 
2894  /* Read incoming plaintext from TLS object */
2895  buf = &ks->plaintext_read_buf;
2896  if (!buf->len)
2897  {
2898  int status;
2899 
2900  ASSERT(buf_init(buf, 0));
2902  update_time();
2903  if (status == -1)
2904  {
2905  msg(D_TLS_ERRORS, "TLS Error: TLS object -> incoming plaintext read error");
2906  goto error;
2907  }
2908  if (status == 1)
2909  {
2910  state_change = true;
2911  dmsg(D_TLS_DEBUG, "TLS -> Incoming Plaintext");
2912 
2913  /* More data may be available, wake up again asap to check. */
2914  *wakeup = 0;
2915  }
2916  }
2917 
2918  /* Send Key */
2919  buf = &ks->plaintext_write_buf;
2920  if (!buf->len && ((ks->state == S_START && !session->opt->server)
2921  || (ks->state == S_GOT_KEY && session->opt->server)))
2922  {
2923  if (!key_method_2_write(buf, session))
2924  {
2925  goto error;
2926  }
2927 
2928  state_change = true;
2929  dmsg(D_TLS_DEBUG_MED, "STATE S_SENT_KEY");
2930  ks->state = S_SENT_KEY;
2931  }
2932 
2933  /* Receive Key */
2934  buf = &ks->plaintext_read_buf;
2935  if (buf->len
2936  && ((ks->state == S_SENT_KEY && !session->opt->server)
2937  || (ks->state == S_START && session->opt->server)))
2938  {
2939  if (!key_method_2_read(buf, multi, session))
2940  {
2941  goto error;
2942  }
2943 
2944  state_change = true;
2945  dmsg(D_TLS_DEBUG_MED, "STATE S_GOT_KEY");
2946  ks->state = S_GOT_KEY;
2947  }
2948 
2949  /* Write outgoing plaintext to TLS object */
2950  buf = &ks->plaintext_write_buf;
2951  if (buf->len)
2952  {
2953  int status = key_state_write_plaintext(&ks->ks_ssl, buf);
2954  if (status == -1)
2955  {
2956  msg(D_TLS_ERRORS,
2957  "TLS ERROR: Outgoing Plaintext -> TLS object write error");
2958  goto error;
2959  }
2960  if (status == 1)
2961  {
2962  state_change = true;
2963  dmsg(D_TLS_DEBUG, "Outgoing Plaintext -> TLS");
2964  }
2965  }
2966 
2967  /* Outgoing Ciphertext to reliable buffer */
2968  if (ks->state >= S_START)
2969  {
2971  if (buf)
2972  {
2974  if (status == -1)
2975  {
2976  msg(D_TLS_ERRORS,
2977  "TLS Error: Ciphertext -> reliable TCP/UDP transport read error");
2978  goto error;
2979  }
2980  if (status == 1)
2981  {
2984  state_change = true;
2985  dmsg(D_TLS_DEBUG, "Outgoing Ciphertext -> Reliable");
2986  }
2987  }
2988  }
2989  }
2990  while (state_change);
2991 
2992  update_time();
2993 
2994  /* Send 1 or more ACKs (each received control packet gets one ACK) */
2995  if (!to_link->len && !reliable_ack_empty(ks->rec_ack))
2996  {
2997  struct buffer buf = ks->ack_write_buf;
2998  ASSERT(buf_init(&buf, FRAME_HEADROOM(&multi->opt.frame)));
2999  write_control_auth(session, ks, &buf, to_link_addr, P_ACK_V1,
3000  RELIABLE_ACK_SIZE, false);
3001  *to_link = buf;
3002  active = true;
3003  dmsg(D_TLS_DEBUG, "Dedicated ACK -> TCP/UDP");
3004  }
3005 
3006  /* When should we wake up again? */
3007  {
3008  if (ks->state >= S_INITIAL)
3009  {
3010  compute_earliest_wakeup(wakeup,
3012 
3013  if (ks->must_negotiate)
3014  {
3016  }
3017  }
3018 
3019  if (ks->established && session->opt->renegotiate_seconds)
3020  {
3021  compute_earliest_wakeup(wakeup,
3022  ks->established + session->opt->renegotiate_seconds - now);
3023  }
3024 
3025  /* prevent event-loop spinning by setting minimum wakeup of 1 second */
3026  if (*wakeup <= 0)
3027  {
3028  *wakeup = 1;
3029 
3030  /* if we had something to send to remote, but to_link was busy,
3031  * let caller know we need to be called again soon */
3032  active = true;
3033  }
3034 
3035  dmsg(D_TLS_DEBUG, "TLS: tls_process: timeout set to %d", *wakeup);
3036 
3037  gc_free(&gc);
3038  return active;
3039  }
3040 
3041 error:
3042  tls_clear_error();
3043  ks->state = S_ERROR;
3044  msg(D_TLS_ERRORS, "TLS Error: TLS handshake failed");
3045  INCR_ERROR;
3046  gc_free(&gc);
3047  return false;
3048 }
3049 
3050 /*
3051  * Called by the top-level event loop.
3052  *
3053  * Basically decides if we should call tls_process for
3054  * the active or untrusted sessions.
3055  */
3056 
3057 int
3059  struct buffer *to_link,
3060  struct link_socket_actual **to_link_addr,
3061  struct link_socket_info *to_link_socket_info,
3062  interval_t *wakeup)
3063 {
3064  struct gc_arena gc = gc_new();
3065  int active = TLSMP_INACTIVE;
3066  bool error = false;
3067 
3069 
3070  tls_clear_error();
3071 
3072  /*
3073  * Process each session object having state of S_INITIAL or greater,
3074  * and which has a defined remote IP addr.
3075  */
3076 
3077  for (int i = 0; i < TM_SIZE; ++i)
3078  {
3079  struct tls_session *session = &multi->session[i];
3080  struct key_state *ks = &session->key[KS_PRIMARY];
3081  struct key_state *ks_lame = &session->key[KS_LAME_DUCK];
3082 
3083  /* set initial remote address */
3084  if (i == TM_ACTIVE && ks->state == S_INITIAL
3085  && link_socket_actual_defined(&to_link_socket_info->lsa->actual))
3086  {
3087  ks->remote_addr = to_link_socket_info->lsa->actual;
3088  }
3089 
3090  dmsg(D_TLS_DEBUG,
3091  "TLS: tls_multi_process: i=%d state=%s, mysid=%s, stored-sid=%s, stored-ip=%s",
3092  i,
3093  state_name(ks->state),
3094  session_id_print(&session->session_id, &gc),
3097 
3099  {
3100  struct link_socket_actual *tla = NULL;
3101 
3102  update_time();
3103 
3104  if (tls_process(multi, session, to_link, &tla,
3105  to_link_socket_info, wakeup))
3106  {
3107  active = TLSMP_ACTIVE;
3108  }
3109 
3110  /*
3111  * If tls_process produced an outgoing packet,
3112  * return the link_socket_actual object (which
3113  * contains the outgoing address).
3114  */
3115  if (tla)
3116  {
3117  multi->to_link_addr = *tla;
3118  *to_link_addr = &multi->to_link_addr;
3119  }
3120 
3121  /*
3122  * If tls_process hits an error:
3123  * (1) If the session has an unexpired lame duck key, preserve it.
3124  * (2) Reinitialize the session.
3125  * (3) Increment soft error count
3126  */
3127  if (ks->state == S_ERROR)
3128  {
3129  ++multi->n_soft_errors;
3130 
3131  if (i == TM_ACTIVE)
3132  {
3133  error = true;
3134  }
3135 
3136  if (i == TM_ACTIVE
3137  && ks_lame->state >= S_ACTIVE
3138  && !multi->opt.single_session)
3139  {
3140  move_session(multi, TM_LAME_DUCK, TM_ACTIVE, true);
3141  }
3142  else
3143  {
3144  reset_session(multi, session);
3145  }
3146  }
3147  }
3148  }
3149 
3150  update_time();
3151 
3153 
3154  /*
3155  * If lame duck session expires, kill it.
3156  */
3157  if (lame_duck_must_die(&multi->session[TM_LAME_DUCK], wakeup))
3158  {
3159  tls_session_free(&multi->session[TM_LAME_DUCK], true);
3160  msg(D_TLS_DEBUG_LOW, "TLS: tls_multi_process: killed expiring key");
3161  }
3162 
3163  /*
3164  * If untrusted session achieves TLS authentication,
3165  * move it to active session, usurping any prior session.
3166  *
3167  * A semi-trusted session is one in which the certificate authentication
3168  * succeeded (if cert verification is enabled) but the username/password
3169  * verification failed. A semi-trusted session can forward data on the
3170  * TLS control channel but not on the tunnel channel.
3171  */
3172  if (DECRYPT_KEY_ENABLED(multi, &multi->session[TM_UNTRUSTED].key[KS_PRIMARY]))
3173  {
3174  move_session(multi, TM_ACTIVE, TM_UNTRUSTED, true);
3175  msg(D_TLS_DEBUG_LOW, "TLS: tls_multi_process: untrusted session promoted to %strusted",
3176  tas == TLS_AUTHENTICATION_SUCCEEDED ? "" : "semi-");
3177  }
3178 
3179  /*
3180  * A hard error means that TM_ACTIVE hit an S_ERROR state and that no
3181  * other key state objects are S_ACTIVE or higher.
3182  */
3183  if (error)
3184  {
3185  for (int i = 0; i < (int) SIZE(multi->key_scan); ++i)
3186  {
3187  if (multi->key_scan[i]->state >= S_ACTIVE)
3188  {
3189  goto nohard;
3190  }
3191  }
3192  ++multi->n_hard_errors;
3193  }
3194 nohard:
3195 
3196 #ifdef ENABLE_DEBUG
3197  /* DEBUGGING -- flood peer with repeating connection attempts */
3198  {
3199  const int throw_level = GREMLIN_CONNECTION_FLOOD_LEVEL(multi->opt.gremlin);
3200  if (throw_level)
3201  {
3202  for (int i = 0; i < (int) SIZE(multi->key_scan); ++i)
3203  {
3204  if (multi->key_scan[i]->state >= throw_level)
3205  {
3206  ++multi->n_hard_errors;
3207  ++multi->n_soft_errors;
3208  }
3209  }
3210  }
3211  }
3212 #endif
3213 
3214  perf_pop();
3215  gc_free(&gc);
3216 
3217  return (tas == TLS_AUTHENTICATION_FAILED) ? TLSMP_KILL : active;
3218 }
3219 
3220 /*
3221  * Pre and post-process the encryption & decryption buffers in order
3222  * to implement a multiplexed TLS channel over the TCP/UDP port.
3223  */
3224 
3225 static inline void
3227  const struct link_socket_actual *from,
3228  struct buffer *buf,
3229  struct crypto_options **opt,
3230  bool floated,
3231  const uint8_t **ad_start)
3232 {
3233  struct gc_arena gc = gc_new();
3234 
3235  uint8_t c = *BPTR(buf);
3236  int op = c >> P_OPCODE_SHIFT;
3237  int key_id = c & P_KEY_ID_MASK;
3238 
3239  /* data channel packet */
3240  for (int i = 0; i < KEY_SCAN_SIZE; ++i)
3241  {
3242  struct key_state *ks = multi->key_scan[i];
3243 
3244  /*
3245  * This is the basic test of TLS state compatibility between a local OpenVPN
3246  * instance and its remote peer.
3247  *
3248  * If the test fails, it tells us that we are getting a packet from a source
3249  * which claims reference to a prior negotiated TLS session, but the local
3250  * OpenVPN instance has no memory of such a negotiation.
3251  *
3252  * It almost always occurs on UDP sessions when the passive side of the
3253  * connection is restarted without the active side restarting as well (the
3254  * passive side is the server which only listens for the connections, the
3255  * active side is the client which initiates connections).
3256  */
3257  if (DECRYPT_KEY_ENABLED(multi, ks)
3258  && key_id == ks->key_id
3259  && (ks->authenticated == KS_AUTH_TRUE)
3260  && (floated || link_socket_actual_match(from, &ks->remote_addr)))
3261  {
3263  {
3265  "Key %s [%d] not initialized (yet), dropping packet.",
3266  print_link_socket_actual(from, &gc), key_id);
3267  goto done;
3268  }
3269 
3270  /* return appropriate data channel decrypt key in opt */
3271  *opt = &ks->crypto_options;
3272  if (op == P_DATA_V2)
3273  {
3274  *ad_start = BPTR(buf);
3275  }
3276  ASSERT(buf_advance(buf, 1));
3277  if (op == P_DATA_V1)
3278  {
3279  *ad_start = BPTR(buf);
3280  }
3281  else if (op == P_DATA_V2)
3282  {
3283  if (buf->len < 4)
3284  {
3285  msg(D_TLS_ERRORS, "Protocol error: received P_DATA_V2 from %s but length is < 4",
3286  print_link_socket_actual(from, &gc));
3287  ++multi->n_soft_errors;
3288  goto done;
3289  }
3290  ASSERT(buf_advance(buf, 3));
3291  }
3292 
3293  ++ks->n_packets;
3294  ks->n_bytes += buf->len;
3296  "TLS: tls_pre_decrypt, key_id=%d, IP=%s",
3297  key_id, print_link_socket_actual(from, &gc));
3298  gc_free(&gc);
3299  return;
3300  }
3301  }
3302 
3303  msg(D_TLS_ERRORS,
3304  "TLS Error: local/remote TLS keys are out of sync: %s [%d]",
3305  print_link_socket_actual(from, &gc), key_id);
3306 
3307 done:
3308  tls_clear_error();
3309  buf->len = 0;
3310  *opt = NULL;
3311  gc_free(&gc);
3312 }
3313 
3314 /*
3315  *
3316  * When we are in TLS mode, this is the first routine which sees
3317  * an incoming packet.
3318  *
3319  * If it's a data packet, we set opt so that our caller can
3320  * decrypt it. We also give our caller the appropriate decryption key.
3321  *
3322  * If it's a control packet, we authenticate it and process it,
3323  * possibly creating a new tls_session if it represents the
3324  * first packet of a new session. For control packets, we will
3325  * also zero the size of *buf so that our caller ignores the
3326  * packet on our return.
3327  *
3328  * Note that openvpn only allows one active session at a time,
3329  * so a new session (once authenticated) will always usurp
3330  * an old session.
3331  *
3332  * Return true if input was an authenticated control channel
3333  * packet.
3334  *
3335  * If we are running in TLS thread mode, all public routines
3336  * below this point must be called with the L_TLS lock held.
3337  */
3338 
3339 bool
3341  const struct link_socket_actual *from,
3342  struct buffer *buf,
3343  struct crypto_options **opt,
3344  bool floated,
3345  const uint8_t **ad_start)
3346 {
3347 
3348  if (buf->len <= 0)
3349  {
3350  buf->len = 0;
3351  *opt = NULL;
3352  return false;
3353  }
3354 
3355  struct gc_arena gc = gc_new();
3356  bool ret = false;
3357 
3358  /* get opcode */
3359  uint8_t pkt_firstbyte = *BPTR(buf);
3360  int op = pkt_firstbyte >> P_OPCODE_SHIFT;
3361 
3362  if ((op == P_DATA_V1) || (op == P_DATA_V2))
3363  {
3364  handle_data_channel_packet(multi, from, buf, opt, floated, ad_start);
3365  return false;
3366  }
3367 
3368  /* get key_id */
3369  int key_id = pkt_firstbyte & P_KEY_ID_MASK;
3370 
3371  /* control channel packet */
3372  bool do_burst = false;
3373  bool new_link = false;
3374  struct session_id sid; /* remote session ID */
3375 
3376  /* verify legal opcode */
3377  if (op < P_FIRST_OPCODE || op > P_LAST_OPCODE)
3378  {
3381  {
3382  msg(D_TLS_ERRORS, "Peer tried unsupported key-method 1");
3383  }
3384  msg(D_TLS_ERRORS,
3385  "TLS Error: unknown opcode received from %s op=%d",
3386  print_link_socket_actual(from, &gc), op);
3387  goto error;
3388  }
3389 
3390  /* hard reset ? */
3391  if (is_hard_reset_method2(op))
3392  {
3393  /* verify client -> server or server -> client connection */
3394  if (((op == P_CONTROL_HARD_RESET_CLIENT_V2
3395  || op == P_CONTROL_HARD_RESET_CLIENT_V3) && !multi->opt.server)
3396  || ((op == P_CONTROL_HARD_RESET_SERVER_V2) && multi->opt.server))
3397  {
3398  msg(D_TLS_ERRORS,
3399  "TLS Error: client->client or server->server connection attempted from %s",
3400  print_link_socket_actual(from, &gc));
3401  goto error;
3402  }
3403  }
3404 
3405  /*
3406  * Authenticate Packet
3407  */
3408  dmsg(D_TLS_DEBUG, "TLS: control channel, op=%s, IP=%s",
3410 
3411  /* get remote session-id */
3412  {
3413  struct buffer tmp = *buf;
3414  buf_advance(&tmp, 1);
3415  if (!session_id_read(&sid, &tmp) || !session_id_defined(&sid))
3416  {
3417  msg(D_TLS_ERRORS,
3418  "TLS Error: session-id not found in packet from %s",
3419  print_link_socket_actual(from, &gc));
3420  goto error;
3421  }
3422  }
3423 
3424  int i;
3425  /* use session ID to match up packet with appropriate tls_session object */
3426  for (i = 0; i < TM_SIZE; ++i)
3427  {
3428  struct tls_session *session = &multi->session[i];
3429  struct key_state *ks = &session->key[KS_PRIMARY];
3430 
3431  dmsg(D_TLS_DEBUG,
3432  "TLS: initial packet test, i=%d state=%s, mysid=%s, rec-sid=%s, rec-ip=%s, stored-sid=%s, stored-ip=%s",
3433  i,
3434  state_name(ks->state),
3435  session_id_print(&session->session_id, &gc),
3436  session_id_print(&sid, &gc),
3437  print_link_socket_actual(from, &gc),
3440 
3441  if (session_id_equal(&ks->session_id_remote, &sid))
3442  /* found a match */
3443  {
3444  if (i == TM_LAME_DUCK)
3445  {
3446  msg(D_TLS_ERRORS,
3447  "TLS ERROR: received control packet with stale session-id=%s",
3448  session_id_print(&sid, &gc));
3449  goto error;
3450  }
3451  dmsg(D_TLS_DEBUG,
3452  "TLS: found match, session[%d], sid=%s",
3453  i, session_id_print(&sid, &gc));
3454  break;
3455  }
3456  }
3457 
3458  /*
3459  * Hard reset and session id does not match any session in
3460  * multi->session: Possible initial packet
3461  */
3462  if (i == TM_SIZE && is_hard_reset_method2(op))
3463  {
3464  struct tls_session *session = &multi->session[TM_ACTIVE];
3465  struct key_state *ks = &session->key[KS_PRIMARY];
3466 
3467  /*
3468  * If we have no session currently in progress, the initial packet will
3469  * open a new session in TM_ACTIVE rather than TM_UNTRUSTED.
3470  */
3472  {
3473  if (multi->opt.single_session && multi->n_sessions)
3474  {
3475  msg(D_TLS_ERRORS,
3476  "TLS Error: Cannot accept new session request from %s due to session context expire or --single-session [1]",
3477  print_link_socket_actual(from, &gc));
3478  goto error;
3479  }
3480 
3481 #ifdef ENABLE_MANAGEMENT
3482  if (management)
3483  {
3486  NULL,
3487  NULL,
3488  NULL,
3489  NULL,
3490  NULL);
3491  }
3492 #endif
3493 
3495  "TLS: Initial packet from %s, sid=%s",
3496  print_link_socket_actual(from, &gc),
3497  session_id_print(&sid, &gc));
3498 
3499  do_burst = true;
3500  new_link = true;
3501  i = TM_ACTIVE;
3502  session->untrusted_addr = *from;
3503  }
3504  }
3505 
3506  /*
3507  * If we detected new session in the last if block, variable i has
3508  * changed to TM_ACTIVE, so check the condition again.
3509  */
3510  if (i == TM_SIZE && is_hard_reset_method2(op))
3511  {
3512  /*
3513  * No match with existing sessions,
3514  * probably a new session.
3515  */
3516  struct tls_session *session = &multi->session[TM_UNTRUSTED];
3517 
3518  /*
3519  * If --single-session, don't allow any hard-reset connection request
3520  * unless it the first packet of the session.
3521  */
3522  if (multi->opt.single_session)
3523  {
3524  msg(D_TLS_ERRORS,
3525  "TLS Error: Cannot accept new session request from %s due to session context expire or --single-session [2]",
3526  print_link_socket_actual(from, &gc));
3527  goto error;
3528  }
3529 
3530  if (!read_control_auth(buf, &session->tls_wrap, from,
3531  session->opt))
3532  {
3533  goto error;
3534  }
3535 
3536  /*
3537  * New session-initiating control packet is authenticated at this point,
3538  * assuming that the --tls-auth command line option was used.
3539  *
3540  * Without --tls-auth, we leave authentication entirely up to TLS.
3541  */
3543  "TLS: new session incoming connection from %s",
3544  print_link_socket_actual(from, &gc));
3545 
3546  new_link = true;
3547  i = TM_UNTRUSTED;
3548  session->untrusted_addr = *from;
3549  }
3550  else
3551  {
3552  struct tls_session *session = &multi->session[i];
3553  struct key_state *ks = &session->key[KS_PRIMARY];
3554 
3555  /*
3556  * Packet must belong to an existing session.
3557  */
3558  if (i != TM_ACTIVE && i != TM_UNTRUSTED)
3559  {
3560  msg(D_TLS_ERRORS,
3561  "TLS Error: Unroutable control packet received from %s (si=%d op=%s)",
3562  print_link_socket_actual(from, &gc),
3563  i,
3564  packet_opcode_name(op));
3565  goto error;
3566  }
3567 
3568  /*
3569  * Verify remote IP address
3570  */
3571  if (!new_link && !link_socket_actual_match(&ks->remote_addr, from))
3572  {
3573  msg(D_TLS_ERRORS, "TLS Error: Received control packet from unexpected IP addr: %s",
3574  print_link_socket_actual(from, &gc));
3575  goto error;
3576  }
3577 
3578  /*
3579  * Remote is requesting a key renegotiation
3580  */
3581  if (op == P_CONTROL_SOFT_RESET_V1
3582  && DECRYPT_KEY_ENABLED(multi, ks))
3583  {
3584  if (!read_control_auth(buf, &session->tls_wrap, from,
3585  session->opt))
3586  {
3587  goto error;
3588  }
3589 
3590  key_state_soft_reset(session);
3591 
3592  dmsg(D_TLS_DEBUG,
3593  "TLS: received P_CONTROL_SOFT_RESET_V1 s=%d sid=%s",
3594  i, session_id_print(&sid, &gc));
3595  }
3596  else
3597  {
3598  /*
3599  * Remote responding to our key renegotiation request?
3600  */
3601  if (op == P_CONTROL_SOFT_RESET_V1)
3602  {
3603  do_burst = true;
3604  }
3605 
3606  if (!read_control_auth(buf, &session->tls_wrap, from,
3607  session->opt))
3608  {
3609  goto error;
3610  }
3611 
3612  dmsg(D_TLS_DEBUG,
3613  "TLS: received control channel packet s#=%d sid=%s",
3614  i, session_id_print(&sid, &gc));
3615  }
3616  }
3617 
3618  /*
3619  * We have an authenticated control channel packet (if --tls-auth was set).
3620  * Now pass to our reliability layer which deals with
3621  * packet acknowledgements, retransmits, sequencing, etc.
3622  */
3623  struct tls_session *session = &multi->session[i];
3624  struct key_state *ks = &session->key[KS_PRIMARY];
3625 
3626  /* Make sure we were initialized and that we're not in an error state */
3627  ASSERT(ks->state != S_UNDEF);
3628  ASSERT(ks->state != S_ERROR);
3629  ASSERT(session_id_defined(&session->session_id));
3630 
3631  /* Let our caller know we processed a control channel packet */
3632  ret = true;
3633 
3634  /*
3635  * Set our remote address and remote session_id
3636  */
3637  if (new_link)
3638  {
3639  ks->session_id_remote = sid;
3640  ks->remote_addr = *from;
3641  ++multi->n_sessions;
3642  }
3643  else if (!link_socket_actual_match(&ks->remote_addr, from))
3644  {
3645  msg(D_TLS_ERRORS,
3646  "TLS Error: Existing session control channel packet from unknown IP address: %s",
3647  print_link_socket_actual(from, &gc));
3648  goto error;
3649  }
3650 
3651  /*
3652  * Should we do a retransmit of all unacknowledged packets in
3653  * the send buffer? This improves the start-up efficiency of the
3654  * initial key negotiation after the 2nd peer comes online.
3655  */
3656  if (do_burst && !session->burst)
3657  {
3659  session->burst = true;
3660  }
3661 
3662  /* Check key_id */
3663  if (ks->key_id != key_id)
3664  {
3665  msg(D_TLS_ERRORS,
3666  "TLS ERROR: local/remote key IDs out of sync (%d/%d) ID: %s",
3667  ks->key_id, key_id, print_key_id(multi, &gc));
3668  goto error;
3669  }
3670 
3671  /*
3672  * Process incoming ACKs for packets we can now
3673  * delete from reliable send buffer
3674  */
3675  {
3676  /* buffers all packet IDs to delete from send_reliable */
3677  struct reliable_ack send_ack;
3678 
3679  send_ack.len = 0;
3680  if (!reliable_ack_read(&send_ack, buf, &session->session_id))
3681  {
3682  msg(D_TLS_ERRORS,
3683  "TLS Error: reading acknowledgement record from packet");
3684  goto error;
3685  }
3686  reliable_send_purge(ks->send_reliable, &send_ack);
3687  }
3688 
3689  if (op != P_ACK_V1 && reliable_can_get(ks->rec_reliable))
3690  {
3691  packet_id_type id;
3692 
3693  /* Extract the packet ID from the packet */
3694  if (reliable_ack_read_packet_id(buf, &id))
3695  {
3696  /* Avoid deadlock by rejecting packet that would de-sequentialize receive buffer */
3698  {
3699  if (reliable_not_replay(ks->rec_reliable, id))
3700  {
3701  /* Save incoming ciphertext packet to reliable buffer */
3702  struct buffer *in = reliable_get_buf(ks->rec_reliable);
3703  ASSERT(in);
3704  if (!buf_copy(in, buf))
3705  {
3707  "Incoming control channel packet too big, dropping.");
3708  goto error;
3709  }
3711  }
3712 
3713  /* Process outgoing acknowledgment for packet just received, even if it's a replay */
3715  }
3716  }
3717  }
3718 
3719 done:
3720  buf->len = 0;
3721  *opt = NULL;
3722  gc_free(&gc);
3723  return ret;
3724 
3725 error:
3726  ++multi->n_soft_errors;
3727  tls_clear_error();
3728  goto done;
3729 }
3730 
3731 /*
3732  * This function is similar to tls_pre_decrypt, except it is called
3733  * when we are in server mode and receive an initial incoming
3734  * packet. Note that we don't modify
3735  * any state in our parameter objects. The purpose is solely to
3736  * determine whether we should generate a client instance
3737  * object, in which case true is returned.
3738  *
3739  * This function is essentially the first-line HMAC firewall
3740  * on the UDP port listener in --mode server mode.
3741  */
3742 bool
3744  const struct link_socket_actual *from,
3745  const struct buffer *buf)
3746 
3747 {
3748  if (buf->len <= 0)
3749  {
3750  return false;
3751  }
3752  struct gc_arena gc = gc_new();
3753 
3754  /* get opcode and key ID */
3755  uint8_t pkt_firstbyte = *BPTR(buf);
3756  int op = pkt_firstbyte >> P_OPCODE_SHIFT;
3757  int key_id = pkt_firstbyte & P_KEY_ID_MASK;
3758 
3759  /* this packet is from an as-yet untrusted source, so
3760  * scrutinize carefully */
3761 
3764  {
3765  /*
3766  * This can occur due to bogus data or DoS packets.
3767  */
3769  "TLS State Error: No TLS state for client %s, opcode=%d",
3770  print_link_socket_actual(from, &gc),
3771  op);
3772  goto error;
3773  }
3774 
3775  if (key_id != 0)
3776  {
3778  "TLS State Error: Unknown key ID (%d) received from %s -- 0 was expected",
3779  key_id,
3780  print_link_socket_actual(from, &gc));
3781  goto error;
3782  }
3783 
3784  if (buf->len > EXPANDED_SIZE_DYNAMIC(&tas->frame))
3785  {
3787  "TLS State Error: Large packet (size %d) received from %s -- a packet no larger than %d bytes was expected",
3788  buf->len,
3789  print_link_socket_actual(from, &gc),
3790  EXPANDED_SIZE_DYNAMIC(&tas->frame));
3791  goto error;
3792  }
3793 
3794 
3795  struct buffer newbuf = clone_buf(buf);
3796  struct tls_wrap_ctx tls_wrap_tmp = tas->tls_wrap;
3797 
3798  /* HMAC test, if --tls-auth was specified */
3799  bool status = read_control_auth(&newbuf, &tls_wrap_tmp, from, NULL);
3800  free_buf(&newbuf);
3801  free_buf(&tls_wrap_tmp.tls_crypt_v2_metadata);
3802  if (tls_wrap_tmp.cleanup_key_ctx)
3803  {
3804  free_key_ctx_bi(&tls_wrap_tmp.opt.key_ctx_bi);
3805  }
3806  if (!status)
3807  {
3808  goto error;
3809  }
3810 
3811  /*
3812  * At this point, if --tls-auth is being used, we know that
3813  * the packet has passed the HMAC test, but we don't know if
3814  * it is a replay yet. We will attempt to defeat replays
3815  * by not advancing to the S_START state until we
3816  * receive an ACK from our first reply to the client
3817  * that includes an HMAC of our randomly generated 64 bit
3818  * session ID.
3819  *
3820  * On the other hand if --tls-auth is not being used, we
3821  * will proceed to begin the TLS authentication
3822  * handshake with only cursory integrity checks having
3823  * been performed, since we will be leaving the task
3824  * of authentication solely up to TLS.
3825  */
3826  gc_free(&gc);
3827  return true;
3828 
3829 error:
3830  tls_clear_error();
3831  gc_free(&gc);
3832  return false;
3833 }
3834 
3835 /* Choose the key with which to encrypt a data packet */
3836 void
3838  struct buffer *buf, struct crypto_options **opt)
3839 {
3840  multi->save_ks = NULL;
3841  if (buf->len <= 0)
3842  {
3843  buf->len = 0;
3844  *opt = NULL;
3845  return;
3846  }
3847 
3848  struct key_state *ks_select = NULL;
3849  for (int i = 0; i < KEY_SCAN_SIZE; ++i)
3850  {
3851  struct key_state *ks = multi->key_scan[i];
3852  if (ks->state >= S_ACTIVE
3853  && (ks->authenticated == KS_AUTH_TRUE)
3855  )
3856  {
3857  if (!ks_select)
3858  {
3859  ks_select = ks;
3860  }
3861  if (now >= ks->auth_deferred_expire)
3862  {
3863  ks_select = ks;
3864  break;
3865  }
3866  }
3867  }
3868 
3869  if (ks_select)
3870  {
3871  *opt = &ks_select->crypto_options;
3872  multi->save_ks = ks_select;
3873  dmsg(D_TLS_KEYSELECT, "TLS: tls_pre_encrypt: key_id=%d", ks_select->key_id);
3874  return;
3875  }
3876  else
3877  {
3878  struct gc_arena gc = gc_new();
3879  dmsg(D_TLS_KEYSELECT, "TLS Warning: no data channel send key available: %s",
3880  print_key_id(multi, &gc));
3881  gc_free(&gc);
3882 
3883  *opt = NULL;
3884  buf->len = 0;
3885  }
3886 }
3887 
3888 void
3889 tls_prepend_opcode_v1(const struct tls_multi *multi, struct buffer *buf)
3890 {
3891  struct key_state *ks = multi->save_ks;
3892  uint8_t op;
3893 
3894  msg(D_TLS_DEBUG, __func__);
3895 
3896  ASSERT(ks);
3897 
3898  op = (P_DATA_V1 << P_OPCODE_SHIFT) | ks->key_id;
3899  ASSERT(buf_write_prepend(buf, &op, 1));
3900 }
3901 
3902 void
3903 tls_prepend_opcode_v2(const struct tls_multi *multi, struct buffer *buf)
3904 {
3905  struct key_state *ks = multi->save_ks;
3906  uint32_t peer;
3907 
3908  msg(D_TLS_DEBUG, __func__);
3909 
3910  ASSERT(ks);
3911 
3912  peer = htonl(((P_DATA_V2 << P_OPCODE_SHIFT) | ks->key_id) << 24
3913  | (multi->peer_id & 0xFFFFFF));
3914  ASSERT(buf_write_prepend(buf, &peer, 4));
3915 }
3916 
3917 void
3918 tls_post_encrypt(struct tls_multi *multi, struct buffer *buf)
3919 {
3920  struct key_state *ks = multi->save_ks;
3921  multi->save_ks = NULL;
3922 
3923  if (buf->len > 0)
3924  {
3925  ASSERT(ks);
3926 
3927  ++ks->n_packets;
3928  ks->n_bytes += buf->len;
3929  }
3930 }
3931 
3932 /*
3933  * Send a payload over the TLS control channel.
3934  * Called externally.
3935  */
3936 
3937 bool
3939  const uint8_t *data,
3940  int size)
3941 {
3942  struct tls_session *session;
3943  struct key_state *ks;
3944  bool ret = false;
3945 
3946  tls_clear_error();
3947 
3948  ASSERT(multi);
3949 
3950  session = &multi->session[TM_ACTIVE];
3951  ks = &session->key[KS_PRIMARY];
3952 
3953  if (ks->state >= S_ACTIVE)
3954  {
3955  if (key_state_write_plaintext_const(&ks->ks_ssl, data, size) == 1)
3956  {
3957  ret = true;
3958  }
3959  }
3960  else
3961  {
3962  if (!ks->paybuf)
3963  {
3964  ks->paybuf = buffer_list_new(0);
3965  }
3966  buffer_list_push_data(ks->paybuf, data, (size_t)size);
3967  ret = true;
3968  }
3969 
3970 
3971  tls_clear_error();
3972 
3973  return ret;
3974 }
3975 
3976 bool
3978  struct buffer *buf)
3979 {
3980  struct tls_session *session;
3981  struct key_state *ks;
3982  bool ret = false;
3983 
3984  tls_clear_error();
3985 
3986  ASSERT(multi);
3987 
3988  session = &multi->session[TM_ACTIVE];
3989  ks = &session->key[KS_PRIMARY];
3990 
3991  if (ks->state >= S_ACTIVE && BLEN(&ks->plaintext_read_buf))
3992  {
3993  if (buf_copy(buf, &ks->plaintext_read_buf))
3994  {
3995  ret = true;
3996  }
3997  ks->plaintext_read_buf.len = 0;
3998  }
3999 
4000  tls_clear_error();
4001 
4002  return ret;
4003 }
4004 
4005 void
4006 tls_update_remote_addr(struct tls_multi *multi, const struct link_socket_actual *addr)
4007 {
4008  struct gc_arena gc = gc_new();
4009  for (int i = 0; i < TM_SIZE; ++i)
4010  {
4011  struct tls_session *session = &multi->session[i];
4012 
4013  for (int j = 0; j < KS_SIZE; ++j)
4014  {
4015  struct key_state *ks = &session->key[j];
4016 
4018  || link_socket_actual_match(addr, &ks->remote_addr))
4019  {
4020  continue;
4021  }
4022 
4023  dmsg(D_TLS_KEYSELECT, "TLS: tls_update_remote_addr from IP=%s to IP=%s",
4025  print_link_socket_actual(addr, &gc));
4026 
4027  ks->remote_addr = *addr;
4028  }
4029  }
4030  gc_free(&gc);
4031 }
4032 
4033 void
4034 show_available_tls_ciphers(const char *cipher_list,
4035  const char *cipher_list_tls13,
4036  const char *tls_cert_profile)
4037 {
4038  printf("Available TLS Ciphers, listed in order of preference:\n");
4039 
4040  if (tls_version_max() >= TLS_VER_1_3)
4041  {
4042  printf("\nFor TLS 1.3 and newer (--tls-ciphersuites):\n\n");
4043  show_available_tls_ciphers_list(cipher_list_tls13, tls_cert_profile, true);
4044  }
4045 
4046  printf("\nFor TLS 1.2 and older (--tls-cipher):\n\n");
4047  show_available_tls_ciphers_list(cipher_list, tls_cert_profile, false);
4048 
4049  printf("\n"
4050  "Be aware that that whether a cipher suite in this list can actually work\n"
4051  "depends on the specific setup of both peers. See the man page entries of\n"
4052  "--tls-cipher and --show-tls for more details.\n\n"
4053  );
4054 }
4055 
4056 /*
4057  * Dump a human-readable rendition of an openvpn packet
4058  * into a garbage collectable string which is returned.
4059  */
4060 const char *
4061 protocol_dump(struct buffer *buffer, unsigned int flags, struct gc_arena *gc)
4062 {
4063  struct buffer out = alloc_buf_gc(256, gc);
4064  struct buffer buf = *buffer;
4065 
4066  uint8_t c;
4067  int op;
4068  int key_id;
4069 
4070  int tls_auth_hmac_size = (flags & PD_TLS_AUTH_HMAC_SIZE_MASK);
4071 
4072  if (buf.len <= 0)
4073  {
4074  buf_printf(&out, "DATA UNDEF len=%d", buf.len);
4075  goto done;
4076  }
4077 
4078  if (!(flags & PD_TLS))
4079  {
4080  goto print_data;
4081  }
4082 
4083  /*
4084  * Initial byte (opcode)
4085  */
4086  if (!buf_read(&buf, &c, sizeof(c)))
4087  {
4088  goto done;
4089  }
4090  op = (c >> P_OPCODE_SHIFT);
4091  key_id = c & P_KEY_ID_MASK;
4092  buf_printf(&out, "%s kid=%d", packet_opcode_name(op), key_id);
4093 
4094  if ((op == P_DATA_V1) || (op == P_DATA_V2))
4095  {
4096  goto print_data;
4097  }
4098 
4099  /*
4100  * Session ID
4101  */
4102  {
4103  struct session_id sid;
4104 
4105  if (!session_id_read(&sid, &buf))
4106  {
4107  goto done;
4108  }
4109  if (flags & PD_VERBOSE)
4110  {
4111  buf_printf(&out, " sid=%s", session_id_print(&sid, gc));
4112  }
4113  }
4114 
4115  /*
4116  * tls-auth hmac + packet_id
4117  */
4118  if (tls_auth_hmac_size)
4119  {
4120  struct packet_id_net pin;
4121  uint8_t tls_auth_hmac[MAX_HMAC_KEY_LENGTH];
4122 
4123  ASSERT(tls_auth_hmac_size <= MAX_HMAC_KEY_LENGTH);
4124 
4125  if (!buf_read(&buf, tls_auth_hmac, tls_auth_hmac_size))
4126  {
4127  goto done;
4128  }
4129  if (flags & PD_VERBOSE)
4130  {
4131  buf_printf(&out, " tls_hmac=%s", format_hex(tls_auth_hmac, tls_auth_hmac_size, 0, gc));
4132  }
4133 
4134  if (!packet_id_read(&pin, &buf, true))
4135  {
4136  goto done;
4137  }
4138  buf_printf(&out, " pid=%s", packet_id_net_print(&pin, (flags & PD_VERBOSE), gc));
4139  }
4140 
4141  /*
4142  * ACK list
4143  */
4144  buf_printf(&out, " %s", reliable_ack_print(&buf, (flags & PD_VERBOSE), gc));
4145 
4146  if (op == P_ACK_V1)
4147  {
4148  goto done;
4149  }
4150 
4151  /*
4152  * Packet ID
4153  */
4154  {
4155  packet_id_type l;
4156  if (!buf_read(&buf, &l, sizeof(l)))
4157  {
4158  goto done;
4159  }
4160  l = ntohpid(l);
4162  }
4163 
4164 print_data:
4165  if (flags & PD_SHOW_DATA)
4166  {
4167  buf_printf(&out, " DATA %s", format_hex(BPTR(&buf), BLEN(&buf), 80, gc));
4168  }
4169  else
4170  {
4171  buf_printf(&out, " DATA len=%d", buf.len);
4172  }
4173 
4174 done:
4175  return BSTR(&out);
4176 }
4177 
4178 void
4180 {
4181  auth_user_pass.wait_for_push = false;
4183 }
static void tls_init_control_channel_frame_parameters(const struct frame *data_channel_frame, struct frame *frame)
Definition: ssl.c:313
struct reliable * rec_reliable
Definition: ssl_common.h:207
#define TLSMP_ACTIVE
Definition: ssl.h:240
bool cipher_kt_mode_aead(const cipher_kt_t *cipher)
Check if the supplied cipher is a supported AEAD mode cipher.
char * management_query_cert(struct management *man, const char *cert_name)
Definition: manage.c:3755
static bool buf_write_u8(struct buffer *dest, int data)
Definition: buffer.h:713
void reliable_free(struct reliable *rel)
Free allocated memory associated with a reliable structure and the pointer itself.
Definition: reliable.c:327
static const char * packet_opcode_name(int op)
Definition: ssl.c:767
const cipher_kt_t * cipher_ctx_get_cipher_kt(const cipher_ctx_t *ctx)
Returns the static cipher parameters for this context.
void options_warning(char *actual, const char *expected)
Definition: options.c:3931
const char * ecdh_curve
Definition: options.h:545
struct key_type key_type
Definition: ssl_common.h:258
#define EXPANDED_SIZE_DYNAMIC(f)
Definition: mtu.h:173
#define P_CONTROL_HARD_RESET_SERVER_V1
Definition: ssl.h:55
static const char * print_key_id(struct tls_multi *multi, struct gc_arena *gc)
Definition: ssl.c:829
size_t implicit_iv_len
The length of implicit_iv.
Definition: crypto.h:170
Security parameter state for processing data channel packets.
Definition: crypto.h:232
struct key_state_ssl ks_ssl
Definition: ssl_common.h:188
#define D_TLS_KEYSELECT
Definition: errlevel.h:144
const char * management_certificate
Definition: options.h:393
static void tls_wrap_free(struct tls_wrap_ctx *tls_wrap)
Free the elements of a tls_wrap_ctx structure.
Definition: ssl.h:508
#define CO_PACKET_ID_LONG_FORM
Bit-flag indicating whether to use OpenVPN&#39;s long packet ID format.
Definition: crypto.h:245
static void strncpynt(char *dest, const char *src, size_t maxlen)
Definition: buffer.h:348
#define TM_ACTIVE
Active tls_session.
Definition: ssl_common.h:474
Security parameter state of one TLS and data channel key session.
Definition: ssl_common.h:178
static void compute_earliest_wakeup(interval_t *earliest, interval_t seconds_from_now)
Definition: ssl.c:1160
bool tun_mtu_defined
Definition: options.h:108
struct buffer work
Work buffer (only for –tls-crypt)
Definition: ssl_common.h:239
unsigned int management_flags
Definition: options.h:392
struct packet_id packet_id
Current packet ID state for both sending and receiving directions.
Definition: crypto.h:238
struct key_state key[KS_SIZE]
Definition: ssl_common.h:454
#define TLSMP_INACTIVE
Definition: ssl.h:239
const char * crl_file
Definition: ssl_common.h:290
struct buffer plaintext_read_buf
Definition: ssl_common.h:202
int n_sessions
Number of sessions negotiated thus far.
Definition: ssl_common.h:536
unsigned int crypto_max_overhead(void)
Return the worst-case OpenVPN crypto overhead (in bytes)
Definition: crypto.c:716
void tls_auth_standalone_finalize(struct tls_auth_standalone *tas, const struct frame *frame)
Definition: ssl.c:1265
bool tls_crypt_v2
Definition: ssl_common.h:318
#define SSLF_CRL_VERIFY_DIR
Definition: ssl_common.h:359
void free_buf(struct buffer *buf)
Definition: buffer.c:185
void ssl_put_auth_challenge(const char *cr_str)
Definition: ssl.c:490
#define D_TLS_DEBUG_LOW
Definition: errlevel.h:77
const char * cipher_list
Definition: options.h:541
static bool write_string(struct buffer *buf, const char *str, const int maxlen)
Definition: ssl.c:2158
unsigned int flags
Bit-flags determining behavior of security operation functions.
Definition: crypto.h:261
bool tls_server
Definition: options.h:526
static void export_user_keying_material(struct key_state_ssl *ssl, struct tls_session *session)
Definition: ssl.c:2455
#define TLS_MULTI_AUTH_STATUS_INTERVAL
Definition: ssl.h:95
void tls_ctx_load_cryptoapi(struct tls_root_ctx *ctx, const char *cryptoapi_cert)
Definition: ssl_openssl.c:875
char * string_alloc(const char *str, struct gc_arena *gc)
Definition: buffer.c:685
#define S_PRE_START
Waiting for the remote OpenVPN peer to acknowledge during the initial three-way handshake.
Definition: ssl_common.h:85
static const char * session_index_name(int index)
Definition: ssl.c:807
bool enable_ncp_fallback
If defined fall back to ciphername if NCP fails.
Definition: options.h:506
static bool session_id_equal(const struct session_id *sid1, const struct session_id *sid2)
Definition: session_id.h:48
#define D_TLS_DEBUG
Definition: errlevel.h:163
#define USER_PASS_LEN
Definition: misc.h:73
struct key keys[2]
Two unidirectional sets of key material.
Definition: crypto.h:185
struct buffer tls_crypt_v2_metadata
Received from client.
Definition: ssl_common.h:243
#define IV_PROTO_DATA_V2
Support P_DATA_V2.
Definition: ssl.h:113
static void tls_limit_reneg_bytes(const cipher_kt_t *cipher, int *reneg_bytes)
Limit the reneg_bytes value when using a small-block (<128 bytes) cipher.
Definition: ssl.c:283
const char * cert_file
Definition: options.h:533
struct packet_id_persist * pid_persist
Persistent packet ID state for keeping state between successive OpenVPN process startups.
Definition: crypto.h:240
bool options_cmp_equal(char *actual, const char *expected)
Definition: options.c:3925
const char * tls_cert_profile
Definition: options.h:544
#define GET_USER_PASS_STATIC_CHALLENGE
Definition: misc.h:122
#define streq(x, y)
Definition: options.h:656
Container for both halves of random material to be used in key method 2 data channel key generation...
Definition: ssl_common.h:136
static bool session_id_write(const struct session_id *sid, struct buffer *buf)
Definition: session_id.h:73
static void secure_memzero(void *data, size_t len)
Securely zeroise memory.
Definition: buffer.h:401
#define TLS_OPTIONS_LEN
Definition: ssl.h:102
void tls_ctx_load_ecdh_params(struct tls_root_ctx *ctx, const char *curve_name)
Load Elliptic Curve Parameters, and load them into the library-specific TLS context.
Definition: ssl_openssl.c:683
int key_state_write_plaintext_const(struct key_state_ssl *ks_ssl, const uint8_t *data, int len)
Insert plaintext data into the TLS module.
Definition: ssl_openssl.c:1946
static bool buf_advance(struct buffer *buf, int size)
Definition: buffer.h:639
void packet_id_persist_load_obj(const struct packet_id_persist *p, struct packet_id *pid)
Definition: packet_id.c:521
Packet geometry parameters.
Definition: mtu.h:93
struct key_state * save_ks
Definition: ssl_common.h:528
#define UP_TYPE_AUTH
Definition: ssl_common.h:41
#define OPENVPN_MAX_IV_LENGTH
Maximum length of an IV.
static bool generate_key_expansion_tls_export(struct tls_session *session, struct key2 *key2)
Definition: ssl.c:1757
bool cipher_kt_mode_ofb_cfb(const cipher_kt_t *cipher)
Check if the supplied cipher is a supported OFB or CFB mode cipher.
void fixup_key(struct key *key, const struct key_type *kt)
Definition: crypto.c:972
static void key_state_soft_reset(struct tls_session *session)
Definition: ssl.c:2129
enum ks_auth_state authenticated
Definition: ssl_common.h:218
const char * ca_path
Definition: options.h:530
struct tls_options * opt
Definition: ssl_common.h:419
time_t must_negotiate
Definition: ssl_common.h:191
#define SSLF_AUTH_USER_PASS_OPTIONAL
Definition: ssl_common.h:357
char * peer_info
Definition: ssl_common.h:564
const char * ca_file
Definition: options.h:528
const char * print_link_socket_actual(const struct link_socket_actual *act, struct gc_arena *gc)
Definition: socket.c:2921
#define RELIABLE_ACK_SIZE
The maximum number of packet IDs waiting to be acknowledged which can be stored in one reliable_ack s...
Definition: reliable.h:46
bool extra_certs_file_inline
Definition: options.h:536
bool cert_file_inline
Definition: options.h:534
static void gc_free(struct gc_arena *a)
Definition: buffer.h:1023
struct tls_root_ctx ssl_ctx
Definition: ssl_common.h:255
bool verified
Definition: ssl_common.h:449
void backend_tls_ctx_reload_crl(struct tls_root_ctx *ssl_ctx, const char *crl_file, bool crl_inline)
Reload the Certificate Revocation List for the SSL channel.
Definition: ssl_openssl.c:1044
static void frame_add_to_extra_frame(struct frame *frame, const unsigned int increment)
Definition: mtu.h:274
void tls_post_encrypt(struct tls_multi *multi, struct buffer *buf)
Perform some accounting for the key state used.
Definition: ssl.c:3918
static int plugin_call(const struct plugin_list *pl, const int type, const struct argv *av, struct plugin_return *pr, struct env_set *es)
Definition: plugin.h:202
#define dmsg
Definition: error.h:174
const char * auth_user_pass_verify_script
Definition: ssl_common.h:327
const char * priv_key_file
Definition: options.h:537
void session_id_random(struct session_id *sid)
Definition: session_id.c:51
Security parameter state for a single VPN tunnel.
Definition: ssl_common.h:511
#define D_TLS_ERRORS
Definition: errlevel.h:59
static void handle_data_channel_packet(struct tls_multi *multi, const struct link_socket_actual *from, struct buffer *buf, struct crypto_options **opt, bool floated, const uint8_t **ad_start)
Definition: ssl.c:3226
static bool buf_safe(const struct buffer *buf, int len)
Definition: buffer.h:541
struct buffer_list * buffer_list_new(const int max_size)
Allocate an empty buffer list of capacity max_size.
Definition: buffer.c:1198
static bool tls_process(struct tls_multi *multi, struct tls_session *session, struct buffer *to_link, struct link_socket_actual **to_link_addr, struct link_socket_info *to_link_socket_info, interval_t *wakeup)
Definition: ssl.c:2686
int pem_password_callback(char *buf, int size, int rwflag, void *u)
Callback to retrieve the user&#39;s password.
Definition: ssl.c:369
int tls_authentication_status(struct tls_multi *multi, const int latency)
Definition: ssl_verify.c:935
void key_state_ssl_free(struct key_state_ssl *ks_ssl)
Free the SSL channel part of the given key state.
Definition: ssl_openssl.c:1913
#define SID_SIZE
Definition: session_id.h:45
void tls_multi_free(struct tls_multi *multi, bool clear)
Cleanup a tls_multi structure and free associated memory allocations.
Definition: ssl.c:1290
#define SET_MTU_UPPER_BOUND
Definition: mtu.h:221
const char * auth_user_pass_file
Definition: ssl_common.h:330
int n
The number of key objects stored in the key2.keys array.
Definition: crypto.h:183
struct reliable_ack * rec_ack
Definition: ssl_common.h:208
struct buffer alloc_buf(size_t size)
Definition: buffer.c:64
void buffer_list_free(struct buffer_list *ol)
Frees a buffer list and all the buffers in it.
Definition: buffer.c:1208
const char * config_ncp_ciphers
Definition: ssl_common.h:315
int handshake_window
Definition: ssl_common.h:279
struct crypto_options opt
Crypto state.
Definition: ssl_common.h:238
void tls_update_remote_addr(struct tls_multi *multi, const struct link_socket_actual *addr)
Updates remote address in TLS sessions.
Definition: ssl.c:4006
#define S_UNDEF
Undefined state, used after a key_state is cleaned up.
Definition: ssl_common.h:77
bool is_hard_reset_method2(int op)
Given a key_method, return true if opcode represents the one of the hard_reset op codes for key-metho...
Definition: ssl.c:845
struct cert_hash_set * cert_hash_set
Definition: ssl_common.h:443
static bool lame_duck_must_die(const struct tls_session *session, interval_t *wakeup)
Definition: ssl.c:1177
static void init_key_contexts(struct key_ctx_bi *key, const struct key_type *key_type, bool server, struct key2 *key2)
Definition: ssl.c:1739
#define packet_id_format
Definition: packet_id.h:95
static void perf_pop(void)
Definition: perf.h:82
Key state is authenticated.
Definition: ssl_common.h:153
void key_state_rm_auth_control_file(struct key_state *ks)
Remove the given key state&#39;s auth control file, if it exists.
Definition: ssl_verify.c:873
bool buf_printf(struct buffer *buf, const char *format,...)
Definition: buffer.c:242
#define D_MULTI_DROPPED
Definition: errlevel.h:103
static bool read_string(struct buffer *buf, char *str, const unsigned int capacity)
Definition: ssl.c:2177
static void perf_push(int type)
Definition: perf.h:78
void tls_prepend_opcode_v2(const struct tls_multi *multi, struct buffer *buf)
Prepend an OpenVPN data channel P_DATA_V2 header to the packet.
Definition: ssl.c:3903
static bool read_control_auth(struct buffer *buf, struct tls_wrap_ctx *ctx, const struct link_socket_actual *from, const struct tls_options *opt)
Definition: ssl.c:1448
time_t crl_last_mtime
CRL last modification time.
Definition: ssl_mbedtls.h:114
struct man_def_auth_context * mda_context
Definition: ssl_common.h:367
static char * format_hex(const uint8_t *data, int size, int maxoutput, struct gc_arena *gc)
Definition: buffer.h:526
#define EXPORT_KEY_DATA_LABEL
Definition: ssl_backend.h:392
void setenv_str(struct env_set *es, const char *name, const char *value)
Definition: env_set.c:285
bool defined
Definition: misc.h:65
#define SIZE(x)
Definition: basic.h:30
#define D_MTU_INFO
Definition: errlevel.h:107
static int buf_read_u8(struct buffer *buf)
Definition: buffer.h:812
const char * win32_version_string(struct gc_arena *gc, bool add_name)
Definition: win32.c:1449
int cipher_kt_iv_size(const cipher_kt_t *cipher_kt)
Returns the size of the IV used by the cipher, in bytes, or 0 if no IV is used.
bool cipher_kt_insecure(const cipher_kt_t *cipher)
Returns true if we consider this cipher to be insecure.
const char * protocol_dump(struct buffer *buffer, unsigned int flags, struct gc_arena *gc)
Definition: ssl.c:4061
const char * cryptoapi_cert
Definition: options.h:571
#define TLS_VER_1_1
Definition: ssl_backend.h:115
const char * ekm_label
Definition: ssl_common.h:380
static void flush_payload_buffer(struct key_state *ks)
Definition: ssl.c:2109
bool packet_id_read(struct packet_id_net *pin, struct buffer *buf, bool long_form)
Definition: packet_id.c:298
struct buffer * reliable_get_buf(struct reliable *rel)
Get the buffer of a free reliable entry in which to store a packet.
Definition: reliable.c:478
static bool push_peer_info(struct buffer *buf, struct tls_session *session)
Definition: ssl.c:2214
#define DECRYPT_KEY_ENABLED(multi, ks)
Check whether the ks key_state is ready to receive data channel packets.
Definition: ssl_verify.h:89
int key_state_write_plaintext(struct key_state_ssl *ks_ssl, struct buffer *buf)
Insert a plaintext buffer into the TLS module.
Definition: ssl_openssl.c:1928
bool tls_item_in_cipher_list(const char *item, const char *list)
Return true iff item is present in the colon-separated zero-terminated cipher list.
Definition: ssl_ncp.c:175
#define TLS_VER_BAD
Parse a TLS version specifier.
Definition: ssl_backend.h:112
#define ASSERT(x)
Definition: error.h:221
#define IV_PROTO_REQUEST_PUSH
Assume client will send a push request and server does not need to wait for a push-request to send a ...
Definition: ssl.h:117
uint8_t random1[32]
Seed used for master secret generation, provided by both client and server.
Definition: ssl_common.h:123
void tls_free_lib(void)
Free any global SSL library-specific data structures.
Definition: ssl_openssl.c:91
bool check_key(struct key *key, const struct key_type *kt)
Definition: crypto.c:933
#define OPENVPN_STATE_AUTH
Definition: manage.h:491
static bool check_debug_level(unsigned int level)
Definition: error.h:245
unsigned int crypto_flags
Definition: ssl_common.h:308
bool tls_pre_decrypt_lite(const struct tls_auth_standalone *tas, const struct link_socket_actual *from, const struct buffer *buf)
Inspect an incoming packet for which no VPN tunnel is active, and determine whether a new VPN tunnel ...
Definition: ssl.c:3743
#define OPENVPN_PLUGIN_FUNC_SUCCESS
struct tls_session session[TM_SIZE]
Array of tls_session objects representing control channel sessions with the remote peer...
Definition: ssl_common.h:597
const char * get_ssl_library_version(void)
return a pointer to a static memory area containing the name and version number of the SSL library in...
Definition: ssl_openssl.c:2211
static struct user_pass auth_user_pass
Definition: ssl.c:388
void ssl_set_auth_token(const char *token)
Definition: ssl.c:445
const char * config_ciphername
Definition: ssl_common.h:314
bool tls_session_update_crypto_params(struct tls_session *session, struct options *options, struct frame *frame, struct frame *frame_fragment)
Update TLS session crypto parameters (cipher and auth) and derive data channel keys based on the supp...
Definition: ssl.c:1941
const char * pkcs12_file
Definition: options.h:539
struct reliable * send_reliable
Definition: ssl_common.h:206
int renegotiate_bytes
Definition: ssl_common.h:281
void hmac_ctx_cleanup(hmac_ctx_t *ctx)
mbedtls_md_context_t hmac_ctx_t
Generic HMAC context.
#define SSLF_OPT_VERIFY
Definition: ssl_common.h:358
bool link_mtu_defined
Definition: options.h:112
char username[USER_PASS_LEN]
Definition: misc.h:75
#define IV_PROTO_TLS_KEY_EXPORT
Supports key derivation via TLS key material exporter [RFC5705].
Definition: ssl.h:120
void packet_id_free(struct packet_id *p)
Definition: packet_id.c:101
static bool buf_read(struct buffer *src, void *dest, int size)
Definition: buffer.h:800
#define MODE_SERVER
Definition: options.h:205
void tls_pre_encrypt(struct tls_multi *multi, struct buffer *buf, struct crypto_options **opt)
Choose the appropriate security parameters with which to process an outgoing packet.
Definition: ssl.c:3837
bool initialized
Definition: crypto.h:225
int offset
Offset in bytes of the actual content within the allocated memory.
Definition: buffer.h:64
void tls_ctx_client_new(struct tls_root_ctx *ctx)
Initialises a library-specific TLS context for a client.
Definition: ssl_openssl.c:126
#define TLS_VER_1_2
Definition: ssl_backend.h:116
struct link_socket_actual to_link_addr
Definition: ssl_common.h:534
#define OPENVPN_AEAD_MIN_IV_LEN
Minimal IV length for AEAD mode ciphers (in bytes): 4-byte packet id + 8 bytes implicit IV...
Definition: crypto.h:272
void reliable_mark_active_outgoing(struct reliable *rel, struct buffer *buf, int opcode)
Mark the reliable entry associated with the given buffer as active outgoing.
Definition: reliable.c:701
list flags
int len
Length in bytes of the actual content within the allocated memory.
Definition: buffer.h:66
void tls_ctx_set_cert_profile(struct tls_root_ctx *ctx, const char *profile)
Set the TLS certificate profile.
Definition: ssl_openssl.c:518
#define SWAP_BUF_SIZE
Definition: ssl.c:1329
void setenv_del(struct env_set *es, const char *name)
Definition: env_set.c:330
#define S_ACTIVE
Operational key_state state immediately after negotiation has completed while still within the handsh...
Definition: ssl_common.h:101
const char * ncp_ciphers
Definition: options.h:509
bool cleanup_key_ctx
opt.key_ctx_bi is owned by this context
Definition: ssl_common.h:244
static void reliable_set_timeout(struct reliable *rel, interval_t timeout)
Definition: reliable.h:467
static bool buf_write(struct buffer *dest, const void *src, int size)
Definition: buffer.h:689
off_t crl_last_size
size of last loaded CRL
Definition: ssl_mbedtls.h:115
struct key_state * key_scan[KEY_SCAN_SIZE]
List of key_state objects in the order they should be scanned by data channel modules.
Definition: ssl_common.h:519
const char * packet_id_net_print(const struct packet_id_net *pin, bool print_timestamp, struct gc_arena *gc)
Definition: packet_id.c:388
void prng_uninit(void)
Definition: crypto.c:1738
struct tls_auth_standalone * tls_auth_standalone_init(struct tls_options *tls_options, struct gc_arena *gc)
Definition: ssl.c:1242
static char * auth_challenge
Definition: ssl.c:392
static bool key_source2_randomize_write(struct key_source2 *k2, struct buffer *buf, bool server)
Definition: ssl.c:2042
uint8_t id[8]
Definition: session_id.h:40
size_t ekm_size
Definition: ssl_common.h:382
struct link_socket_actual remote_addr
Definition: ssl_common.h:196
bool nocache
Definition: misc.h:66
#define CLEAR(x)
Definition: basic.h:33
char * options_string_extract_option(const char *options_string, const char *opt_name, struct gc_arena *gc)
Given an OpenVPN options string, extract the value of an option.
Definition: options.c:4104
#define BPTR(buf)
Definition: buffer.h:124
void packet_id_init(struct packet_id *p, int seq_backtrack, int time_backtrack, const char *name, int unit)
Definition: packet_id.c:78
bool reliable_ack_write(struct reliable_ack *ack, struct buffer *buf, const struct session_id *sid, int max, bool prepend)
Write a packet ID acknowledgment record to a buffer.
Definition: reliable.c:213
#define BUF_SIZE(f)
Definition: mtu.h:194
static bool write_empty_string(struct buffer *buf)
Definition: ssl.c:2148
void init_ssl(const struct options *options, struct tls_root_ctx *new_ctx)
Build master SSL context object that serves for the whole of OpenVPN instantiation.
Definition: ssl.c:588
#define KEY_DIRECTION_NORMAL
Definition: crypto.h:174
void print_details(struct key_state_ssl *ks_ssl, const char *prefix)
Definition: ssl_openssl.c:2012
Control channel wrapping (–tls-auth/–tls-crypt) context.
Definition: ssl_common.h:231
bool crl_file_inline
Definition: options.h:551
void get_default_gateway(struct route_gateway_info *rgi, openvpn_net_ctx_t *ctx)
Definition: route.c:2740
static void move_session(struct tls_multi *multi, int dest, int src, bool reinit_src)
Definition: ssl.c:1124
#define KEY_SCAN_SIZE
Definition: ssl_common.h:496
uint8_t random2[32]
Seed used for key expansion, provided by both client and server.
Definition: ssl_common.h:126
#define OPENVPN_STATE_WAIT
Definition: manage.h:490
#define GET_USER_PASS_STATIC_CHALLENGE_ECHO
Definition: misc.h:123
interval_t packet_timeout
Definition: ssl_common.h:280
void tls_prepend_opcode_v1(const struct tls_multi *multi, struct buffer *buf)
Prepend a one-byte OpenVPN data channel P_DATA_V1 opcode to the packet.
Definition: ssl.c:3889
#define S_ERROR
Error state.
Definition: ssl_common.h:76
int tun_mtu
Definition: options.h:107
static void tls1_PRF(const uint8_t *label, int label_len, const uint8_t *sec, int slen, uint8_t *out1, int olen)
Definition: ssl.c:1663
interval_t renegotiate_seconds
Definition: ssl_common.h:283
#define KS_SIZE
Size of the tls_session.key array.
Definition: ssl_common.h:396
struct env_item * list
Definition: env_set.h:44
#define P_KEY_ID_MASK
Definition: ssl.h:50
void tls_ctx_free(struct tls_root_ctx *ctx)
Frees the library-specific TLSv1 context.
Definition: ssl_openssl.c:144
unsigned int packet_id_print_type
Definition: packet_id.h:96
void key_state_ssl_init(struct key_state_ssl *ks_ssl, const struct tls_root_ctx *ssl_ctx, bool is_server, struct tls_session *session)
Initialise the SSL channel part of the given key state.
Definition: ssl_openssl.c:1873
struct session_id session_id_remote
Definition: ssl_common.h:195
const char * iana_name
Definition: ssl_backend.h:62
static bool tls_session_generate_data_channel_keys(struct tls_session *session)
Generate data channel keys for the supplied TLS session.
Definition: ssl.c:1913
static bool packet_id_close_to_wrapping(const struct packet_id_send *p)
Definition: packet_id.h:311
int rand_bytes(uint8_t *output, int len)
Wrapper for secure random number generator.
#define counter_format
Definition: common.h:39
void frame_print(const struct frame *frame, int level, const char *prefix)
Definition: mtu.c:139
static struct gc_arena gc_new(void)
Definition: buffer.h:1015
Container for one half of random material to be used in key method 2 data channel key generation...
Definition: ssl_common.h:119
bool ca_file_inline
Definition: options.h:529
#define KS_PRIMARY
Primary key state index.
Definition: ssl_common.h:392
Key state is not authenticated.
Definition: ssl_common.h:150
bool single_session
Definition: ssl_common.h:273
bool tls_crypt_wrap(const struct buffer *src, struct buffer *dst, struct crypto_options *opt)
Wrap a control channel packet (both authenticates and encrypts the data).
Definition: tls_crypt.c:106
time_t now
Definition: otime.c:36
void reliable_ack_adjust_frame_parameters(struct frame *frame, int max)
Definition: reliable.c:258
#define malloc
Definition: cmocka.c:1795
#define P_CONTROL_HARD_RESET_SERVER_V2
Definition: ssl.h:64
const char * authname
Definition: options.h:510
#define S_START
Three-way handshake is complete, start of key exchange.
Definition: ssl_common.h:90
#define INCR_SUCCESS
Definition: ssl.c:91
openvpn_net_ctx_t * net_ctx
Definition: ssl_common.h:345
time_t established
Definition: ssl_common.h:190
void show_available_tls_ciphers(const char *cipher_list, const char *cipher_list_tls13, const char *tls_cert_profile)
Definition: ssl.c:4034
#define ALLOC_OBJ_CLEAR(dptr, type)
Definition: buffer.h:1050
#define TM_UNTRUSTED
As yet un-trusted tls_session being negotiated.
Definition: ssl_common.h:475
unsigned int mda_key_id
Definition: ssl_common.h:222
struct crypto_options crypto_options
Definition: ssl_common.h:198
#define ENABLE_MANAGEMENT
Definition: config-msvc.h:14
#define P_LAST_OPCODE
Definition: ssl.h:73
struct tls_multi * tls_multi_init(struct tls_options *tls_options)
Allocate and initialize a tls_multi structure.
Definition: ssl.c:1204
char * locked_cn
Definition: ssl_common.h:548
bool reliable_not_replay(const struct reliable *rel, packet_id_type id)
Check that a received packet&#39;s ID is not a replay.
Definition: reliable.c:431
void hmac_ctx_update(hmac_ctx_t *ctx, const uint8_t *src, int src_len)
struct buffer * reliable_get_buf_output_sequenced(struct reliable *rel)
Get the buffer of free reliable entry and check whether the outgoing acknowledgment sequence is still...
Definition: reliable.c:495
void free_ssl_lib(void)
Definition: ssl.c:344
static void key_ctx_update_implicit_iv(struct key_ctx *ctx, uint8_t *key, size_t key_len)
Update the implicit IV for a key_ctx_bi based on TLS session ids and cipher used. ...
Definition: ssl.c:1889
int extra_link
Maximum number of bytes in excess of external network interface&#39;s MTU that might be read from or writ...
Definition: mtu.h:122
#define FRAME_HEADROOM(f)
Definition: mtu.h:187
#define ntohpid(x)
Definition: packet_id.h:64
const struct static_challenge_info * sci
Definition: ssl_common.h:373
static bool generate_key_expansion(struct key_ctx_bi *key, struct tls_session *session)
Definition: ssl.c:1840
const char * reliable_ack_print(struct buffer *buf, bool verbose, struct gc_arena *gc)
Definition: reliable.c:265
int n_hard_errors
Definition: ssl_common.h:542
void auth_set_client_reason(struct tls_multi *multi, const char *client_reason)
Sets the reason why authentication of a client failed.
Definition: ssl_verify.c:840
int transition_window
Definition: ssl_common.h:278
#define KEY_DIRECTION_INVERSE
Definition: crypto.h:175
void * gc_malloc(size_t size, bool clear, struct gc_arena *a)
Definition: buffer.c:405
void frame_init_mssfix(struct frame *frame, const struct options *options)
Set the –mssfix option.
Definition: mtu.c:130
bool key_state_export_keying_material(struct tls_session *session, const char *label, size_t label_size, void *ekm, size_t ekm_size)
Keying Material Exporters [RFC 5705] allows additional keying material to be derived from existing TL...
Definition: ssl_openssl.c:159
static struct user_pass passbuf
Definition: ssl.c:357
cipher_ctx_t * cipher
Generic cipher context.
Definition: crypto.h:166
#define TLS_RELIABLE_N_SEND_BUFFERS
Definition: ssl.h:84
bool xmit_hold
Definition: ssl_common.h:264
#define GET_USER_PASS_PASSWORD_ONLY
Definition: misc.h:115
unsigned __int32 uint32_t
Definition: config-msvc.h:157
void wipe_auth_token(struct tls_multi *multi)
Wipes the authentication token out of the memory, frees and cleans up related buffers and flags...
Definition: auth_token.c:390
mbedtls_md_info_t md_kt_t
Generic message digest key type context.
#define D_TLS_STATE_ERRORS
Definition: errlevel.h:132
#define S_INITIAL
Initial key_state state after initialization by key_state_init() before start of three-way handshake...
Definition: ssl_common.h:80
unsigned int flags
Definition: route.h:153
int keysize
Definition: options.h:511
#define INCR_ERROR
Definition: ssl.c:92
const char * ciphername
Definition: options.h:505
void tls_ctx_restrict_ciphers(struct tls_root_ctx *ctx, const char *ciphers)
Restrict the list of ciphers that can be used within the TLS context for TLS 1.2 and below...
Definition: ssl_openssl.c:427
static bool buf_write_u16(struct buffer *dest, int data)
Definition: buffer.h:720
void pem_password_setup(const char *auth_file)
Definition: ssl.c:360
interval_t reliable_send_timeout(const struct reliable *rel)
Determined how many seconds until the earliest resend should be attempted.
Definition: reliable.c:632
void ssl_purge_auth(const bool auth_user_pass_only)
Definition: ssl.c:465
static bool swap_hmac(struct buffer *buf, const struct crypto_options *co, bool incoming)
Definition: ssl.c:1332
int key_id
The current active key id, used to keep track of renegotiations.
Definition: ssl_common.h:435
static bool link_socket_actual_defined(const struct link_socket_actual *act)
Definition: socket.h:699
static struct user_pass auth_token
Definition: ssl.c:389
Container for one set of cipher and/or HMAC contexts.
Definition: crypto.h:164
bool ncp_enabled
Definition: ssl_common.h:316
#define P_CONTROL_V1
Definition: ssl.h:57
#define OPENVPN_PLUGIN_TLS_FINAL
static void reset_session(struct tls_multi *multi, struct tls_session *session)
Definition: ssl.c:1149
struct buffer_list * paybuf
Definition: ssl_common.h:210
mbedtls_cipher_info_t cipher_kt_t
Generic cipher key type context.
static bool reliable_ack_empty(struct reliable_ack *ack)
Check whether an acknowledgment structure contains any packet IDs to be acknowledged.
Definition: reliable.h:151
void tls_ctx_restrict_ciphers_tls13(struct tls_root_ctx *ctx, const char *ciphers)
Restrict the list of ciphers that can be used within the TLS context for TLS 1.3 and higher...
Definition: ssl_openssl.c:489
#define TLS_RELIABLE_N_REC_BUFFERS
Definition: ssl.h:85
void tls_adjust_frame_parameters(struct frame *frame)
Definition: ssl.c:303
struct key_ctx encrypt
Cipher and/or HMAC contexts for sending direction.
Definition: crypto.h:221
static bool session_id_defined(const struct session_id *sid1)
Definition: session_id.h:55
const char * extra_certs_file
Definition: options.h:535
void tls_ctx_server_new(struct tls_root_ctx *ctx)
Initialise a library-specific TLS context for a server.
Definition: ssl_openssl.c:108
int key_state_read_plaintext(struct key_state_ssl *ks_ssl, struct buffer *buf, int maxlen)
Extract plaintext data from the TLS module.
Definition: ssl_openssl.c:1990
int replay_window
Definition: ssl_common.h:310
static SERVICE_STATUS status
Definition: automatic.c:43
void init_key_ctx_bi(struct key_ctx_bi *ctx, const struct key2 *key2, int key_direction, const struct key_type *kt, const char *name)
Definition: crypto.c:871
void set_auth_token(struct user_pass *up, struct user_pass *tk, const char *token)
Definition: misc.c:510
unsigned int ssl_flags
Definition: options.h:558
const struct buffer * tls_crypt_v2_wkc
Wrapped client key, sent to server.
Definition: ssl_common.h:241
#define CO_USE_TLS_KEY_MATERIAL_EXPORT
Bit-flag indicating that data channel key derivation is done using TLS keying material export [RFC570...
Definition: crypto.h:257
static bool session_id_read(struct session_id *sid, struct buffer *buf)
Definition: session_id.h:61
#define P_CONTROL_HARD_RESET_CLIENT_V2
Definition: ssl.h:63
struct cert_hash_set * locked_cert_hash_set
Definition: ssl_common.h:550
struct tls_wrap_ctx tls_wrap
Definition: ssl.h:141
void ssl_set_auth_nocache(void)
Definition: ssl.c:433
int hmac_ctx_size(const hmac_ctx_t *ctx)
struct tls_wrap_ctx tls_wrap
Definition: ssl_common.h:425
#define PERF_TLS_MULTI_PROCESS
Definition: perf.h:42
struct tls_options opt
Definition: ssl_common.h:517
void buf_clear(struct buffer *buf)
Definition: buffer.c:164
int n_soft_errors
Definition: ssl_common.h:543
void crypto_adjust_frame_parameters(struct frame *frame, const struct key_type *kt, bool packet_id, bool packet_id_long_form)
Calculate crypto overhead and adjust frame to account for that.
Definition: crypto.c:682
const md_kt_t * md_kt_get(const char *digest)
Return message digest parameters, based on the given digest name.
const char * challenge_text
Definition: misc.h:102
const struct plugin_list * plugins
Definition: ssl_common.h:346
struct buffer plaintext_write_buf
Definition: ssl_common.h:203
struct env_item * next
Definition: env_set.h:39
static bool buf_copy(struct buffer *dest, const struct buffer *src)
Definition: buffer.h:734
struct link_socket_actual untrusted_addr
Definition: ssl_common.h:452
#define msg
Definition: error.h:173
hmac_ctx_t * hmac
Generic HMAC context.
Definition: crypto.h:167
#define S_GOT_KEY
Local OpenVPN process has received the remote&#39;s part of the key material.
Definition: ssl_common.h:96
char * format_hex_ex(const uint8_t *data, int size, int maxoutput, unsigned int space_break_flags, const char *separator, struct gc_arena *gc)
Definition: buffer.c:519
#define RGI_HWADDR_DEFINED
Definition: route.h:149
#define PAYLOAD_SIZE_DYNAMIC(f)
Definition: mtu.h:166
void free_key_ctx_bi(struct key_ctx_bi *ctx)
Definition: crypto.c:908
#define PD_TLS_AUTH_HMAC_SIZE_MASK
Definition: ssl.h:567
#define CO_IGNORE_PACKET_ID
Bit-flag indicating whether to ignore the packet ID of a received packet.
Definition: crypto.h:248
char * remote_ciphername
cipher specified in peer&#39;s config file
Definition: ssl_common.h:592
#define INCR_SENT
Definition: ssl.c:89
bool tls_rec_payload(struct tls_multi *multi, struct buffer *buf)
Definition: ssl.c:3977
static void key_source2_print(const struct key_source2 *k)
Definition: ssl.c:1562
void tls_multi_init_set_options(struct tls_multi *multi, const char *local, const char *remote)
Definition: ssl.c:1277
struct connection_entry ce
Definition: options.h:230
#define SC_ECHO
Definition: misc.h:99
void tls_ctx_load_extra_certs(struct tls_root_ctx *ctx, const char *extra_certs_file, bool extra_certs_file_inline)
Load extra certificate authority certificates from the given file or path.
Definition: ssl_openssl.c:1644
static void openvpn_PRF(const uint8_t *secret, int secret_len, const char *label, const uint8_t *client_seed, int client_seed_len, const uint8_t *server_seed, int server_seed_len, const struct session_id *client_sid, const struct session_id *server_sid, uint8_t *output, int output_len)
Definition: ssl.c:1697
Get a tls_cipher_name_pair containing OpenSSL and IANA names for supplied TLS cipher name...
Definition: ssl_backend.h:62
struct packet_id_send send
Definition: packet_id.h:207
uint8_t * data
Pointer to the allocated memory.
Definition: buffer.h:68
bool wait_for_push
Definition: misc.h:67
char * dest
Definition: compat-lz4.h:686
const char * local_options
Definition: ssl_common.h:268
#define TM_SIZE
Size of the tls_multi.session array.
Definition: ssl_common.h:479
#define TLS_VER_1_0
Definition: ssl_backend.h:114
#define TLS_AUTHENTICATION_FAILED
Definition: ssl_verify.h:69
struct key_ctx decrypt
cipher and/or HMAC contexts for receiving direction.
Definition: crypto.h:223
struct key_source client
Random provided by client.
Definition: ssl_common.h:137
int platform_stat(const char *path, platform_stat_t *buf)
Definition: platform.c:328
#define TLS_VER_1_3
Definition: ssl_backend.h:117
const char * tls_groups
Definition: options.h:543
#define MAX_HMAC_KEY_LENGTH
void openvpn_encrypt(struct buffer *buf, struct buffer work, struct crypto_options *opt)
Encrypt and HMAC sign a packet so that it can be sent as a data channel VPN tunnel packet to a remote...
Definition: crypto.c:299
Container for bidirectional cipher and HMAC key material.
Definition: crypto.h:181
static void link_socket_set_outgoing_addr(struct link_socket_info *info, const struct link_socket_actual *act, const char *common_name, struct env_set *es)
Definition: socket.h:986
void tls_ctx_check_cert_time(const struct tls_root_ctx *ctx)
Check our certificate notBefore and notAfter fields, and warn if the cert is either not yet valid or ...
Definition: ssl_openssl.c:603
void show_available_tls_ciphers_list(const char *cipher_list, const char *tls_cert_profile, bool tls13)
Definition: ssl_openssl.c:2072
int tls_version_parse(const char *vstr, const char *extra)
Definition: ssl.c:504
static bool tls_session_user_pass_enabled(struct tls_session *session)
Returns whether or not the server should check for username/password.
Definition: ssl.c:1004
void tls_ctx_set_tls_groups(struct tls_root_ctx *ctx, const char *groups)
Set the (elliptic curve) group allowed for signatures and key exchange.
Definition: ssl_openssl.c:552
#define P_DATA_V1
Definition: ssl.h:59
static void tls1_P_hash(const md_kt_t *md_kt, const uint8_t *sec, int sec_len, const uint8_t *seed, int seed_len, uint8_t *out, int olen)
Definition: ssl.c:1580
#define CONTROL_SEND_ACK_MAX
Definition: ssl.h:79
#define BLEN(buf)
Definition: buffer.h:127
void tls_ctx_load_cert_file(struct tls_root_ctx *ctx, const char *cert_file, bool cert_file_inline)
Use Windows cryptoapi for key and cert, and add to library-specific TLS context.
Definition: ssl_openssl.c:922
time_t auth_deferred_expire
Definition: ssl_common.h:219
struct key_source server
Random provided by server.
Definition: ssl_common.h:138
static void tls_session_init(struct tls_multi *multi, struct tls_session *session)
Initialize a tls_session structure.
Definition: ssl.c:1036
bool reliable_wont_break_sequentiality(const struct reliable *rel, packet_id_type id)
Check that a received packet&#39;s ID can safely be stored in the reliable structure&#39;s processing window...
Definition: reliable.c:458
void init_ssl_lib(void)
Definition: ssl.c:336
bool pkcs12_file_inline
Definition: options.h:540
void verify_user_pass(struct user_pass *up, struct tls_multi *multi, struct tls_session *session)
Verify the given username and password, using either an external script, a plugin, or the management interface.
Definition: ssl_verify.c:1242
#define P_OPCODE_SHIFT
Definition: ssl.h:51
unsigned char md_kt_size(const md_kt_t *kt)
Returns the size of the message digest, in bytes.
struct buffer * reliable_get_buf_sequenced(struct reliable *rel)
Get the buffer of the next sequential and active entry.
Definition: reliable.c:531
void auth_user_pass_setup(const char *auth_file, const struct static_challenge_info *sci)
Definition: ssl.c:396
struct frame frame
Definition: ssl.h:142
#define D_HANDSHAKE
Definition: errlevel.h:72
static bool get_user_pass(struct user_pass *up, const char *auth_file, const char *prefix, const unsigned int flags)
Definition: misc.h:134
int key_id
Key id for this key_state, inherited from struct tls_session.
Definition: ssl_common.h:186
#define GET_USER_PASS_DYNAMIC_CHALLENGE
Definition: misc.h:121
bool openvpn_decrypt(struct buffer *buf, struct buffer work, struct crypto_options *opt, const struct frame *frame, const uint8_t *ad_start)
HMAC verify and decrypt a data channel packet received from a remote OpenVPN peer.
Definition: crypto.c:656
#define D_SHOW_KEY_SOURCE
Definition: errlevel.h:120
#define TLSMP_KILL
Definition: ssl.h:241
unsigned __int8 uint8_t
Definition: config-msvc.h:159
struct buffer * reliable_send(struct reliable *rel, int *opcode)
Get the next packet to send to the remote peer.
Definition: reliable.c:575
void reliable_mark_deleted(struct reliable *rel, struct buffer *buf, bool inc_pid)
Remove an entry from a reliable structure.
Definition: reliable.c:728
struct session_id session_id
Definition: ssl_common.h:428
bool get_user_pass_cr(struct user_pass *up, const char *auth_file, const char *prefix, const unsigned int flags, const char *auth_challenge)
Definition: misc.c:156
bool tls_pre_decrypt(struct tls_multi *multi, const struct link_socket_actual *from, struct buffer *buf, struct crypto_options **opt, bool floated, const uint8_t **ad_start)
Determine whether an incoming packet is a data channel or control channel packet, and process accordi...
Definition: ssl.c:3340
#define ALLOC_ARRAY_CLEAR_GC(dptr, type, n, gc)
Definition: buffer.h:1072
void purge_user_pass(struct user_pass *up, const bool force)
Definition: misc.c:489
enum tls_wrap_ctx::@11 mode
Control channel wrapping mode.
Structure that wraps the TLS context.
Definition: ssl_mbedtls.h:104
static bool buf_write_u32(struct buffer *dest, int data)
Definition: buffer.h:727
void frame_set_mtu_dynamic(struct frame *frame, int mtu, unsigned int flags)
Definition: mtu.c:87
unsigned int flags
Definition: misc.h:100
#define ALLOC_OBJ_CLEAR_GC(dptr, type, gc)
Definition: buffer.h:1087
static char * read_string_alloc(struct buffer *buf)
Definition: ssl.c:2193
#define OPENVPN_PLUGIN_AUTH_USER_PASS_VERIFY
bool plugin_defined(const struct plugin_list *pl, const int type)
Definition: plugin.c:901
bool ssl_clean_auth_token(void)
Definition: ssl.c:454
static void key_state_free(struct key_state *ks, bool clear)
Cleanup a key_state structure.
Definition: ssl.c:960
#define KS_LAME_DUCK
Key state index that will retire soon.
Definition: ssl_common.h:393
static void check_malloc_return(const void *p)
Definition: buffer.h:1093
#define P_CONTROL_SOFT_RESET_V1
Definition: ssl.h:56
struct key_source2 * key_src
Definition: ssl_common.h:200
int initial_opcode
Definition: ssl_common.h:427
struct key_ctx_bi key_ctx_bi
OpenSSL cipher and HMAC contexts for both sending and receiving directions.
Definition: crypto.h:234
void delayed_auth_pass_purge(void)
Definition: ssl.c:4179
Security parameter state of a single session within a VPN tunnel.
Definition: ssl_common.h:416
#define VALGRIND_MAKE_READABLE(addr, len)
Definition: memdbg.h:53
#define S_SENT_KEY
Local OpenVPN process has sent its part of the key material.
Definition: ssl_common.h:93
bool tls_ctx_set_options(struct tls_root_ctx *ctx, unsigned int ssl_flags)
Set any library specific options.
Definition: ssl_openssl.c:313
void output_peer_info_env(struct env_set *es, const char *peer_info)
Definition: misc.c:745
static void write_control_auth(struct tls_session *session, struct key_state *ks, struct buffer *buf, struct link_socket_actual **to_link_addr, int opcode, int max_ack, bool prepend_ack)
Definition: ssl.c:1386
Definition: misc.h:63
int renegotiate_packets
Definition: ssl_common.h:282
int push_peer_info_detail
Definition: ssl_common.h:277
The acknowledgment structure in which packet IDs are stored for later acknowledgment.
Definition: reliable.h:64
int initial_opcode
Definition: ssl_common.h:194
bool disable_occ
Definition: ssl_common.h:274
Wrapper structure for dynamically allocated memory.
Definition: buffer.h:60
#define M_FATAL
Definition: error.h:94
bool reliable_ack_read_packet_id(struct buffer *buf, packet_id_type *pid)
Read the packet ID of a received packet.
Definition: reliable.c:123
struct frame frame
Definition: ssl_common.h:324
#define KEY_METHOD_2
Definition: ssl.h:125
void tls_multi_init_finalize(struct tls_multi *multi, const struct frame *frame)
Finalize initialization of a tls_multi structure.
Definition: ssl.c:1223
#define TLS_AUTHENTICATION_SUCCEEDED
Definition: ssl_verify.h:68
bool crl_file_inline
Definition: ssl_common.h:291
#define buf_init(buf, offset)
Definition: buffer.h:196
bool tls_send_payload(struct tls_multi *multi, const uint8_t *data, int size)
Definition: ssl.c:3938
int tls_ctx_load_pkcs12(struct tls_root_ctx *ctx, const char *pkcs12_file, bool pkcs12_file_inline, bool load_ca_file)
Load PKCS #12 file for key, cert and (optionally) CA certs, and add to library-specific TLS context...
Definition: ssl_openssl.c:748
static bool management_enable_def_auth(const struct management *man)
Definition: manage.h:471
static bool buf_write_prepend(struct buffer *dest, const void *src, int size)
Definition: buffer.h:701
static bool key_method_2_write(struct buffer *buf, struct tls_session *session)
Handle the writing of key data, peer-info, username/password, OCC to the TLS control channel (clearte...
Definition: ssl.c:2339
void tls_ctx_load_dh_params(struct tls_root_ctx *ctx, const char *dh_file, bool dh_file_inline)
Load Diffie Hellman Parameters, and load them into the library-specific TLS context.
Definition: ssl_openssl.c:639
void frame_finalize(struct frame *frame, bool link_mtu_defined, int link_mtu, bool tun_mtu_defined, int tun_mtu)
Definition: mtu.c:56
unsigned int mda_key_id_counter
Definition: manage.h:51
const char * cipher_list_tls13
Definition: options.h:542
bool reliable_can_send(const struct reliable *rel)
Check whether a reliable structure has any active entries ready to be (re)sent.
Definition: reliable.c:547
void management_set_state(struct management *man, const int state, const char *detail, const in_addr_t *tun_local_ip, const struct in6_addr *tun_local_ip6, const struct openvpn_sockaddr *local, const struct openvpn_sockaddr *remote)
Definition: manage.c:2716
char * locked_username
Definition: ssl_common.h:549
char * common_name
Definition: ssl_common.h:441
void reliable_init(struct reliable *rel, int buf_size, int offset, int array_size, bool hold)
Initialize a reliable structure.
Definition: reliable.c:309
bool tls_crypt_v2_extract_client_key(struct buffer *buf, struct tls_wrap_ctx *ctx, const struct tls_options *opt)
Extract a tls-crypt-v2 client key from a P_CONTROL_HARD_RESET_CLIENT_V3 message, and load the key int...
Definition: tls_crypt.c:570
void crypto_uninit_lib(void)
The reliability layer storage structure for one VPN tunnel&#39;s control channel in one direction...
Definition: reliable.h:88
size_t ekm_label_size
Definition: ssl_common.h:381
int link_mtu
Maximum packet size to be sent over the external network interface.
Definition: mtu.h:94
#define D_TLS_DEBUG_MED
Definition: errlevel.h:155
#define TM_LAME_DUCK
Old tls_session.
Definition: ssl_common.h:478
struct buffer alloc_buf_gc(size_t size, struct gc_arena *gc)
Definition: buffer.c:90
uint8_t hwaddr[6]
Definition: route.h:163
uint32_t peer_id
Definition: ssl_common.h:589
int key_state_write_ciphertext(struct key_state_ssl *ks_ssl, struct buffer *buf)
Insert a ciphertext buffer into the TLS module.
Definition: ssl_openssl.c:1975
static void frame_remove_from_extra_frame(struct frame *frame, const unsigned int decrement)
Definition: mtu.h:280
uint32_t packet_id_type
Definition: packet_id.h:49
#define PD_VERBOSE
Definition: ssl.h:570
static const char * state_name(int state)
Definition: ssl.c:733
void tls_init_lib(void)
Perform any static initialisation necessary by the library.
Definition: ssl_openssl.c:77
bool tls_crypt_unwrap(const struct buffer *src, struct buffer *dst, struct crypto_options *opt)
Unwrap a control channel packet (decrypts, authenticates and performs replay checks).
Definition: tls_crypt.c:183
#define M_WARN
Definition: error.h:96
void tls_clear_error(void)
Clear the underlying SSL library&#39;s error state.
Definition: ssl_openssl.c:102
void ssl_purge_auth_challenge(void)
Definition: ssl.c:483
static int min_int(int x, int y)
Definition: integer.h:57
#define PACKAGE_VERSION
Definition: config.h:742
static int buf_forward_capacity_total(const struct buffer *buf)
Definition: buffer.h:580
bool reliable_can_get(const struct reliable *rel)
Check whether a reliable structure has any free buffers available for use.
Definition: reliable.c:412
#define free
Definition: cmocka.c:1850
void tls_x509_clear_env(struct env_set *es)
Remove any X509_ env variables from env_set es.
Definition: ssl_verify.c:1484
int tls_version_max(void)
Return the maximum TLS version (as a TLS_VER_x constant) supported by current SSL implementation...
Definition: ssl_openssl.c:210
#define PD_TLS
Definition: ssl.h:569
#define P_CONTROL_HARD_RESET_CLIENT_V1
Definition: ssl.h:54
void key2_print(const struct key2 *k, const struct key_type *kt, const char *prefix0, const char *prefix1)
Definition: crypto.c:1063
Garbage collection arena used to keep track of dynamically allocated memory.
Definition: buffer.h:116
bool reliable_ack_read(struct reliable_ack *ack, struct buffer *buf, const struct session_id *sid)
Read an acknowledgment record from a received packet.
Definition: reliable.c:158
const char * openssl_name
Definition: ssl_backend.h:62
static bool link_socket_actual_match(const struct link_socket_actual *a1, const struct link_socket_actual *a2)
Definition: socket.h:886
int tls_ctx_use_management_external_key(struct tls_root_ctx *ctx)
Tell the management interface to load the given certificate and the external private key matching the...
Definition: ssl_openssl.c:1433
void cert_hash_free(struct cert_hash_set *chs)
Frees the given set of certificate hashes.
Definition: ssl_verify.c:234
#define FULL_SYNC
Definition: ssl.c:2121
static int buf_read_u16(struct buffer *buf)
Definition: buffer.h:825
static struct buffer clear_buf(void)
Return an empty struct buffer.
Definition: buffer.h:209
int interval_t
Definition: common.h:45
#define UP_TYPE_PRIVATE_KEY
Definition: ssl_common.h:42
static void key_source_print(const struct key_source *k, const char *prefix)
Definition: ssl.c:1536
counter_type n_bytes
Definition: ssl_common.h:212
struct buffer ack_write_buf
Definition: ssl_common.h:204
const char * session_id_print(const struct session_id *sid, struct gc_arena *gc)
Definition: session_id.c:57
uint8_t implicit_iv[OPENVPN_MAX_IV_LENGTH]
The implicit part of the IV.
Definition: crypto.h:168
void hmac_ctx_init(hmac_ctx_t *ctx, const uint8_t *key, int key_length, const md_kt_t *kt)
int key_state_read_ciphertext(struct key_state_ssl *ks_ssl, struct buffer *buf, int maxlen)
Extract ciphertext data from the TLS module.
Definition: ssl_openssl.c:1960
static const tls_cipher_name_pair tls_cipher_name_translation_table[]
SSL/TLS Cipher suite name translation table.
Definition: ssl.c:99
static void key_state_init(struct tls_session *session, struct key_state *ks)
Initialize a key_state structure.
Definition: ssl.c:880
static int key_source2_read(struct key_source2 *k2, struct buffer *buf, bool server)
Definition: ssl.c:2075
#define BSTR(buf)
Definition: buffer.h:129
static bool auth_user_pass_enabled
Definition: ssl.c:387
hmac_ctx_t * hmac_ctx_new(void)
#define TUN_LINK_DELTA(f)
Definition: mtu.h:151
#define KEY_METHOD_MASK
Definition: ssl.h:128
const char * dh_file
Definition: options.h:531
time_t must_die
Definition: ssl_common.h:192
#define KEY_EXPANSION_ID
Definition: ssl.h:47
static void tls_session_free(struct tls_session *session, bool clear)
Clean up a tls_session structure.
Definition: ssl.c:1099
char password[USER_PASS_LEN]
Definition: misc.h:76
#define P_CONTROL_HARD_RESET_CLIENT_V3
Definition: ssl.h:67
struct buffer clone_buf(const struct buffer *buf)
Definition: buffer.c:117
void verify_final_auth_checks(struct tls_multi *multi, struct tls_session *session)
Perform final authentication checks, including locking of the cn, the allowed certificate hashes...
Definition: ssl_verify.c:1422
static bool random_bytes_to_buf(struct buffer *buf, uint8_t *out, int outlen)
Definition: ssl.c:2026
void tls_ctx_load_ca(struct tls_root_ctx *ctx, const char *ca_file, bool ca_file_inline, const char *ca_path, bool tls_server)
Load certificate authority certificates from the given file or path.
Definition: ssl_openssl.c:1495
void reliable_mark_active_incoming(struct reliable *rel, struct buffer *buf, packet_id_type pid, int opcode)
Mark the reliable entry associated with the given buffer as active incoming.
Definition: reliable.c:669
void hmac_ctx_final(hmac_ctx_t *ctx, uint8_t *dst)
const cipher_kt_t * cipher
Cipher static parameters.
Definition: crypto.h:143
static void update_time(void)
Definition: otime.h:94
bool replay
Definition: options.h:515
static int auth_deferred_expire_window(const struct tls_options *o)
Definition: ssl.c:2664
counter_type n_packets
Definition: ssl_common.h:213
bool dh_file_inline
Definition: options.h:532
int tls_ctx_load_priv_file(struct tls_root_ctx *ctx, const char *priv_key_file, bool priv_key_file_inline)
Load private key file into the given TLS context.
Definition: ssl_openssl.c:983
#define TLS_CHANNEL_BUF_SIZE
Definition: common.h:78
#define MF_EXTERNAL_CERT
Definition: manage.h:347
void buffer_list_pop(struct buffer_list *ol)
Definition: buffer.c:1345
#define P_ACK_V1
Definition: ssl.h:58
void hmac_ctx_free(hmac_ctx_t *ctx)
struct buffer * buffer_list_peek(struct buffer_list *ol)
Retrieve the head buffer.
Definition: buffer.c:1280
struct key_ctx tls_crypt_v2_server_key
Decrypts client keys.
Definition: ssl_common.h:240
static void tls_ctx_reload_crl(struct tls_root_ctx *ssl_ctx, const char *crl_file, bool crl_file_inline)
Load (or possibly reload) the CRL file into the SSL context.
Definition: ssl.c:545
struct buffer_entry * buffer_list_push_data(struct buffer_list *ol, const void *data, size_t size)
Allocates and appends a new buffer containing data of length size.
Definition: buffer.c:1253
#define MF_EXTERNAL_KEY
Definition: manage.h:341
const char * remote_options
Definition: ssl_common.h:269
#define P_DATA_V2
Definition: ssl.h:60
const tls_cipher_name_pair * tls_get_cipher_name_pair(const char *cipher_name, size_t len)
Definition: ssl.c:257
int replay_time
Definition: ssl_common.h:311
void reliable_schedule_now(struct reliable *rel)
Reschedule all entries of a reliable structure to be ready for (re)sending immediately.
Definition: reliable.c:613
void reliable_send_purge(struct reliable *rel, const struct reliable_ack *ack)
Remove acknowledged packets from a reliable structure.
Definition: reliable.c:360
static int packet_id_size(bool long_form)
Definition: packet_id.h:305
static struct key2 generate_key_expansion_openvpn_prf(const struct tls_session *session)
Definition: ssl.c:1771
void crypto_init_lib(void)
unsigned int ssl_flags
Definition: ssl_common.h:364
struct _stat platform_stat_t
Definition: platform.h:141
#define PD_SHOW_DATA
Definition: ssl.h:568
uint8_t pre_master[48]
Random used for master secret generation, provided only by client OpenVPN peer.
Definition: ssl_common.h:120
void hmac_ctx_reset(hmac_ctx_t *ctx)
struct env_set * es
Definition: ssl_common.h:344
bool priv_key_file_inline
Definition: options.h:538
static bool session_id_write_prepend(const struct session_id *sid, struct buffer *buf)
Definition: session_id.h:67
static bool key_method_2_read(struct buffer *buf, struct tls_multi *multi, struct tls_session *session)
Handle reading key data, peer-info, username/password, OCC from the TLS control channel (cleartext)...
Definition: ssl.c:2492
int fragment
Definition: options.h:117
Container for two sets of OpenSSL cipher and/or HMAC contexts for both sending and receiving directio...
Definition: crypto.h:219
void init_key_type(struct key_type *kt, const char *ciphername, const char *authname, int keysize, bool tls_mode, bool warn)
Initialize a key_type structure with.
Definition: crypto.c:741
Container for unidirectional cipher and HMAC key material.
Definition: crypto.h:151
struct tls_wrap_ctx tls_wrap
TLS handshake wrapping state.
Definition: ssl_common.h:322
#define GET_USER_PASS_MANAGEMENT
Definition: misc.h:113
bool reliable_ack_acknowledge_packet_id(struct reliable_ack *ack, packet_id_type pid)
Record a packet ID for later acknowledgment.
Definition: reliable.c:141
int link_mtu_dynamic
Dynamic MTU value for the external network interface.
Definition: mtu.h:97
int link_mtu
Definition: options.h:111
#define INCR_GENERATED
Definition: ssl.c:90
int tls_multi_process(struct tls_multi *multi, struct buffer *to_link, struct link_socket_actual **to_link_addr, struct link_socket_info *to_link_socket_info, interval_t *wakeup)
Definition: ssl.c:3058
bool data_channel_use_ekm
Definition: options.h:653
const char * crl_file
Definition: options.h:550